001     282361
005     20240229155040.0
024 7 _ |a 10.1016/j.phro.2023.100477
|2 doi
024 7 _ |a pmid:37635846
|2 pmid
024 7 _ |a pmc:PMC10457557
|2 pmc
037 _ _ |a DKFZ-2023-01745
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a Rippke, Carolin
|b 0
245 _ _ |a Leaf-individual calibration for a double stack multileaf collimator in photon radiotherapy.
260 _ _ |a Amsterdam [u. a.]
|c 2023
|b Elsevier Science
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1693227019_1863
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a In online adaptive stereotactic body radiotherapy treatments, linear accelerator delivery accuracy is essential. Recently introduced double stack multileaf collimators (MLCs) have new facets in their calibration. We established a radiation-based leaf-individual calibration (LIMCA) method for double stack MLCs.MLC leaf positions were evaluated from four cardinal angles with test patterns at measurement positions throughout the radiation field on EBT3 radiochromic film for each single stack. The accuracy of the method and repeatability of the results were assessed. The effect of MLC positioning errors was characterized for a measured output factor curve and a clinical patient plan.All positions in the motor step - position calibration file were optimized in the established LIMCA method. The resulting double stack mean accuracy for all angles was 0.2 ± 0.1 mm for X1 (left bank) and 0.2 ± 0.2 mm for X2 (right bank). The accuracy of the leaf position evaluation was 0.2 mm (95% confidence level). The MLC calibration remained stable over four months. Small MLC leaf position errors (e.g. 1.2 mm field size reduction) resulted in important dose errors (-5.8 %) for small quadratic fields of 0.83 × 0.83 cm2. Single stack position accuracy was essential for highly modulated treatment plans.LIMCA is a new double stack MLC calibration method that increases treatment accuracy from four angles and for all moving leaves.
536 _ _ |a 315 - Bildgebung und Radioonkologie (POF4-315)
|0 G:(DE-HGF)POF4-315
|c POF4-315
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
650 _ 7 |a Adaptive radiotherapy
|2 Other
650 _ 7 |a Image guided radiotherapy
|2 Other
650 _ 7 |a MR-Linac
|2 Other
650 _ 7 |a MR-guided radiotherapy
|2 Other
650 _ 7 |a Multileaf collimator
|2 Other
650 _ 7 |a Photon radiotherapy
|2 Other
650 _ 7 |a Quality assurance
|2 Other
650 _ 7 |a Quality control
|2 Other
650 _ 7 |a Small field dosimetry
|2 Other
700 1 _ |a Renkamp, C Katharina
|b 1
700 1 _ |a Attieh, Charbel
|b 2
700 1 _ |a Schlüter, Fabian
|b 3
700 1 _ |a Buchele, Carolin
|b 4
700 1 _ |a Debus, Jürgen
|0 P:(DE-He78)8714da4e45acfa36ce87c291443a9218
|b 5
|u dkfz
700 1 _ |a Alber, Markus
|b 6
700 1 _ |a Klüter, Sebastian
|b 7
773 _ _ |a 10.1016/j.phro.2023.100477
|g Vol. 27, p. 100477 -
|0 PERI:(DE-600)2963795-8
|p 100477
|t Physics & Imaging in Radiation Oncology
|v 27
|y 2023
|x 2405-6316
909 C O |o oai:inrepo02.dkfz.de:282361
|p VDB
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 5
|6 P:(DE-He78)8714da4e45acfa36ce87c291443a9218
913 1 _ |a DE-HGF
|b Gesundheit
|l Krebsforschung
|1 G:(DE-HGF)POF4-310
|0 G:(DE-HGF)POF4-315
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Bildgebung und Radioonkologie
|x 0
914 1 _ |y 2023
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2022-11-10
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2022-11-10
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b PHYS IMAG RADIAT ONC : 2022
|d 2023-08-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-08-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-08-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0320
|2 StatID
|b PubMed Central
|d 2023-08-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2023-05-02T08:51:39Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2023-05-02T08:51:39Z
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Anonymous peer review
|d 2023-05-02T08:51:39Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-08-25
915 _ _ |a WoS
|0 StatID:(DE-HGF)0112
|2 StatID
|b Emerging Sources Citation Index
|d 2023-08-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-08-25
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2023-08-25
920 1 _ |0 I:(DE-He78)E050-20160331
|k E050
|l E050 KKE Strahlentherapie
|x 0
920 1 _ |0 I:(DE-He78)HD01-20160331
|k HD01
|l DKTK HD zentral
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)E050-20160331
980 _ _ |a I:(DE-He78)HD01-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21