001     282465
005     20240229155042.0
024 7 _ |a 10.1172/jci.insight.171225
|2 doi
024 7 _ |a pmid:37651185
|2 pmid
024 7 _ |a altmetric:153954742
|2 altmetric
037 _ _ |a DKFZ-2023-01780
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a Löding, Sebastian
|b 0
245 _ _ |a Altered plasma metabolite levels can be detected years before a glioma diagnosis.
260 _ _ |a Ann Arbor, Michigan
|c 2023
|b JCI Insight
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1698324069_31145
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a 2023 Oct 9;8(19):e171225
520 _ _ |a Genetic and metabolic changes in tissue and blood are reported to occur several years before glioma diagnosis. As gliomas are currently detected late, a liquid biopsy for early detection could impact the quality of life and prognosis of patients. Here, we present a nested case-control study of 550 pre-diagnostic glioma cases and 550 healthy controls, from the Northern Sweden Health and Disease study (NSHDS) and the European Prospective Investigation into Cancer and Nutrition (EPIC) study. We identified 93 significantly altered metabolites related to glioma development up to eight years before diagnosis. Out of these metabolites, a panel of 20 selected metabolites showed strong disease correlation and consistent progression pattern towards diagnosis in both the NSHDS and EPIC cohorts, and separated favorably future cases from controls independently of biological sex. The blood metabolite panel also successfully separated both lower grade glioma and glioblastoma cases from controls, up to eight years before diagnosis in NSHDS (glioma AUC=0.85, P=3.1e-12; glioblastoma AUC=0.85, P=6.3e-8), and up to two years before diagnosis in EPIC (glioma AUC=0.81, P=0.005; glioblastoma AUC=0.89, P=0.04). Pathway enrichment analysis detected metabolites related to the TCA-cycle, Warburg effect, gluconeogenesis, cysteine-, pyruvate- and tyrosine metabolism as the most affected.
536 _ _ |a 313 - Krebsrisikofaktoren und Prävention (POF4-313)
|0 G:(DE-HGF)POF4-313
|c POF4-313
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
650 _ 7 |a Brain cancer
|2 Other
650 _ 7 |a Metabolism
|2 Other
650 _ 7 |a Oncology
|2 Other
700 1 _ |a Andersson, Ulrika
|b 1
700 1 _ |a Kaaks, Rudolf
|0 P:(DE-He78)4b2dc91c9d1ac33a1c0e0777d0c1697a
|b 2
|u dkfz
700 1 _ |a Schulze, Matthias B
|b 3
700 1 _ |a Pala, Valeria
|b 4
700 1 _ |a Urbarova, Ilona
|b 5
700 1 _ |a Amiano, Pilar
|b 6
700 1 _ |a Colorado-Yohar, Sandra M
|b 7
700 1 _ |a Guevara, Marcela
|b 8
700 1 _ |a Heath, Alicia K
|b 9
700 1 _ |a Chatziioannou, Anastasia Chrysovalantou
|b 10
700 1 _ |a Johansson, Mattias
|b 11
700 1 _ |a Nyberg, Lars
|b 12
700 1 _ |a Antti, Henrik
|b 13
700 1 _ |a Björkblom, Benny
|b 14
700 1 _ |a Melin, Beatrice
|b 15
773 _ _ |a 10.1172/jci.insight.171225
|0 PERI:(DE-600)2874757-4
|n 19
|p e171225
|t JCI insight
|v 8
|y 2023
|x 2379-3708
909 C O |p VDB
|o oai:inrepo02.dkfz.de:282465
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 2
|6 P:(DE-He78)4b2dc91c9d1ac33a1c0e0777d0c1697a
913 1 _ |a DE-HGF
|b Gesundheit
|l Krebsforschung
|1 G:(DE-HGF)POF4-310
|0 G:(DE-HGF)POF4-313
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Krebsrisikofaktoren und Prävention
|x 0
914 1 _ |y 2023
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2022-05-18T13:47:27Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2022-05-18T13:47:27Z
915 _ _ |a Creative Commons Attribution CC BY (No Version)
|0 LIC:(DE-HGF)CCBYNV
|2 V:(DE-HGF)
|b DOAJ
|d 2022-05-18T13:47:27Z
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2023-03-31
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2023-03-31
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2023-03-31
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2023-03-31
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b JCI INSIGHT : 2022
|d 2023-08-23
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-08-23
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-08-23
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0320
|2 StatID
|b PubMed Central
|d 2023-08-23
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Anonymous peer review
|d 2022-05-18T13:47:27Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-08-23
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-08-23
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1110
|2 StatID
|b Current Contents - Clinical Medicine
|d 2023-08-23
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b JCI INSIGHT : 2022
|d 2023-08-23
920 1 _ |0 I:(DE-He78)C020-20160331
|k C020
|l C020 Epidemiologie von Krebs
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)C020-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21