001     282494
005     20240723104117.0
024 7 _ |a arXiv:2302.01790
|2 arXiv
024 7 _ |a doi.org/10.48550/arXiv.2302.01790
|2 doi
037 _ _ |a DKFZ-2023-01783
088 _ _ |a arXiv:2302.01790
|2 arXiv
100 1 _ |a Reinke, Annika
|0 P:(DE-He78)97e904f47dab556a77c0149cd0002591
|b 0
245 _ _ |a Understanding metric-related pitfalls in image analysis validation
260 _ _ |c 2023
|b arXiv
336 7 _ |a Preprint
|b preprint
|m preprint
|0 PUB:(DE-HGF)25
|s 1721724030_17462
|2 PUB:(DE-HGF)
336 7 _ |a WORKING_PAPER
|2 ORCID
336 7 _ |a Electronic Article
|0 28
|2 EndNote
336 7 _ |a preprint
|2 DRIVER
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a Output Types/Working Paper
|2 DataCite
500 _ _ |a arXiv:2302.01790 [cs.CV] (or arXiv:2302.01790v2 [cs.CV] for this version) https://doi.org/10.48550/arXiv.2302.01790
520 _ _ |a Validation metrics are key for the reliable tracking of scientific progress and for bridging the current chasm between artificial intelligence (AI) research and its translation into practice. However, increasing evidence shows that particularly in image analysis, metrics are often chosen inadequately in relation to the underlying research problem. This could be attributed to a lack of accessibility of metric-related knowledge: While taking into account the individual strengths, weaknesses, and limitations of validation metrics is a critical prerequisite to making educated choices, the relevant knowledge is currently scattered and poorly accessible to individual researchers. Based on a multi-stage Delphi process conducted by a multidisciplinary expert consortium as well as extensive community feedback, the present work provides the first reliable and comprehensive common point of access to information on pitfalls related to validation metrics in image analysis. Focusing on biomedical image analysis but with the potential of transfer to other fields, the addressed pitfalls generalize across application domains and are categorized according to a newly created, domain-agnostic taxonomy. To facilitate comprehension, illustrations and specific examples accompany each pitfall. As a structured body of information accessible to researchers of all levels of expertise, this work enhances global comprehension of a key topic in image analysis validation.
536 _ _ |a 315 - Bildgebung und Radioonkologie (POF4-315)
|0 G:(DE-HGF)POF4-315
|c POF4-315
|f POF IV
|x 0
588 _ _ |a Dataset connected to arXivarXiv
650 _ 7 |a Computer Vision and Pattern Recognition (cs.CV)
|2 Other
650 _ 7 |a FOS: Computer and information sciences
|2 Other
700 1 _ |a Tizabi, Minu D.
|0 P:(DE-He78)26651d9aa10255ad4f35610a56aa91e8
|b 1
700 1 _ |a Baumgartner, Michael
|0 P:(DE-He78)6ae68adec0915a4ae2d58aff814aaceb
|b 2
700 1 _ |a Eisenmann, Matthias
|0 P:(DE-He78)c9d6245b17f0ab26eeed345cb00d3359
|b 3
700 1 _ |a Heckmann-Nötzel, Doreen
|0 P:(DE-He78)98dd16a42af0888dd129e1cd2ee2766a
|b 4
700 1 _ |a Kavur, A. Emre
|0 P:(DE-He78)64296d0922a2da68074f5de2ccf74487
|b 5
700 1 _ |a Rädsch, Tim
|0 P:(DE-He78)683f71d452c83a7f5ec62969c6012466
|b 6
700 1 _ |a Sudre, Carole H.
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Acion, Laura
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Antonelli, Michela
|0 P:(DE-HGF)0
|b 9
700 1 _ |a Arbel, Tal
|0 P:(DE-HGF)0
|b 10
700 1 _ |a Bakas, Spyridon
|0 P:(DE-HGF)0
|b 11
700 1 _ |a Benis, Arriel
|0 P:(DE-HGF)0
|b 12
700 1 _ |a Blaschko, Matthew
|0 P:(DE-HGF)0
|b 13
700 1 _ |a Büttner, Florian
|0 P:(DE-He78)fdeeec93551e8f3bad68db88a1130c5d
|b 14
700 1 _ |a Cardoso, M. Jorge
|0 P:(DE-HGF)0
|b 15
700 1 _ |a Cheplygina, Veronika
|0 P:(DE-HGF)0
|b 16
700 1 _ |a Chen, Jianxu
|0 P:(DE-HGF)0
|b 17
700 1 _ |a Christodoulou, Evangelia
|0 P:(DE-He78)8da2eca0bc6341c8681c317fe2b8e27b
|b 18
700 1 _ |a Cimini, Beth A.
|0 P:(DE-HGF)0
|b 19
700 1 _ |a Collins, Gary S.
|0 P:(DE-HGF)0
|b 20
700 1 _ |a Farahani, Keyvan
|0 P:(DE-HGF)0
|b 21
700 1 _ |a Ferrer, Luciana
|0 P:(DE-HGF)0
|b 22
700 1 _ |a Galdran, Adrian
|0 P:(DE-HGF)0
|b 23
700 1 _ |a van Ginneken, Bram
|0 P:(DE-HGF)0
|b 24
700 1 _ |a Glocker, Ben
|0 P:(DE-HGF)0
|b 25
700 1 _ |a Godau, Patrick
|0 P:(DE-He78)77a2a5b07dcbd46277a18a32372ea154
|b 26
700 1 _ |a Haase, Robert
|0 P:(DE-He78)ee8356e679288a9a6176198b11ab2e2c
|b 27
700 1 _ |a Hashimoto, Daniel A.
|0 P:(DE-HGF)0
|b 28
700 1 _ |a Hoffman, Michael M.
|0 P:(DE-HGF)0
|b 29
700 1 _ |a Huisman, Merel
|0 P:(DE-HGF)0
|b 30
700 1 _ |a Isensee, Fabian
|0 P:(DE-He78)7ea9af59d03ec7deb982a0e0562358fa
|b 31
700 1 _ |a Jannin, Pierre
|0 P:(DE-HGF)0
|b 32
700 1 _ |a Kahn, Charles E.
|0 P:(DE-HGF)0
|b 33
700 1 _ |a Kainmueller, Dagmar
|0 P:(DE-HGF)0
|b 34
700 1 _ |a Kainz, Bernhard
|0 P:(DE-HGF)0
|b 35
700 1 _ |a Karargyris, Alexandros
|0 P:(DE-HGF)0
|b 36
700 1 _ |a Karthikesalingam, Alan
|0 P:(DE-HGF)0
|b 37
700 1 _ |a Kenngott, Hannes
|0 P:(DE-HGF)0
|b 38
700 1 _ |a Kleesiek, Jens
|0 P:(DE-He78)ec13544e7fd4c62ac008490a4547e990
|b 39
700 1 _ |a Kofler, Florian
|0 P:(DE-HGF)0
|b 40
700 1 _ |a Kooi, Thijs
|0 P:(DE-HGF)0
|b 41
700 1 _ |a Kopp-Schneider, Annette
|0 P:(DE-He78)bb6a7a70f976eb8df1769944bf913596
|b 42
700 1 _ |a Kozubek, Michal
|0 P:(DE-HGF)0
|b 43
700 1 _ |a Kreshuk, Anna
|0 P:(DE-HGF)0
|b 44
700 1 _ |a Kurc, Tahsin
|0 P:(DE-HGF)0
|b 45
700 1 _ |a Landman, Bennett A.
|0 P:(DE-HGF)0
|b 46
700 1 _ |a Litjens, Geert
|0 P:(DE-HGF)0
|b 47
700 1 _ |a Madani, Amin
|0 P:(DE-HGF)0
|b 48
700 1 _ |a Maier-Hein, Klaus
|0 P:(DE-He78)33c74005e1ce56f7025c4f6be15321b3
|b 49
700 1 _ |a Martel, Anne L.
|0 P:(DE-HGF)0
|b 50
700 1 _ |a Mattson, Peter
|0 P:(DE-HGF)0
|b 51
700 1 _ |a Meijering, Erik
|0 P:(DE-HGF)0
|b 52
700 1 _ |a Menze, Bjoern
|0 P:(DE-HGF)0
|b 53
700 1 _ |a Moons, Karel G. M.
|0 P:(DE-HGF)0
|b 54
700 1 _ |a Müller, Henning
|0 P:(DE-HGF)0
|b 55
700 1 _ |a Nichyporuk, Brennan
|0 P:(DE-HGF)0
|b 56
700 1 _ |a Nickel, Felix
|0 P:(DE-HGF)0
|b 57
700 1 _ |a Petersen, Jens
|0 P:(DE-He78)ce7813ed6ec6ac6cc92e67e89a54ca10
|b 58
700 1 _ |a Rafelski, Susanne M.
|0 P:(DE-HGF)0
|b 59
700 1 _ |a Rajpoot, Nasir
|0 P:(DE-HGF)0
|b 60
700 1 _ |a Reyes, Mauricio
|0 P:(DE-HGF)0
|b 61
700 1 _ |a Riegler, Michael A.
|0 P:(DE-HGF)0
|b 62
700 1 _ |a Rieke, Nicola
|0 P:(DE-HGF)0
|b 63
700 1 _ |a Saez-Rodriguez, Julio
|0 P:(DE-He78)bf6f53ab6b4f57f00e71da7e1594b17e
|b 64
700 1 _ |a Sánchez, Clara I.
|0 P:(DE-HGF)0
|b 65
700 1 _ |a Shetty, Shravya
|0 P:(DE-HGF)0
|b 66
700 1 _ |a van Smeden, Maarten
|0 P:(DE-HGF)0
|b 67
700 1 _ |a Summers, Ronald M.
|0 P:(DE-HGF)0
|b 68
700 1 _ |a Taha, Abdel A.
|0 P:(DE-HGF)0
|b 69
700 1 _ |a Tiulpin, Aleksei
|0 P:(DE-HGF)0
|b 70
700 1 _ |a Tsaftaris, Sotirios A.
|0 P:(DE-HGF)0
|b 71
700 1 _ |a Van Calster, Ben
|0 P:(DE-HGF)0
|b 72
700 1 _ |a Varoquaux, Gaël
|0 P:(DE-HGF)0
|b 73
700 1 _ |a Wiesenfarth, Manuel
|0 P:(DE-He78)1042737c83ba70ec508bdd99f0096864
|b 74
700 1 _ |a Yaniv, Ziv R.
|0 P:(DE-HGF)0
|b 75
700 1 _ |a Jäger, Paul F.
|0 P:(DE-He78)04a0b5a49db132d8f00cee326cb743ca
|b 76
700 1 _ |a Maier-Hein, Lena
|0 P:(DE-He78)26a1176cd8450660333a012075050072
|b 77
773 _ _ |a doi.org/10.48550/arXiv.2302.01790
909 C O |p VDB
|o oai:inrepo02.dkfz.de:282494
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 0
|6 P:(DE-He78)97e904f47dab556a77c0149cd0002591
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 1
|6 P:(DE-He78)26651d9aa10255ad4f35610a56aa91e8
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 2
|6 P:(DE-He78)6ae68adec0915a4ae2d58aff814aaceb
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 3
|6 P:(DE-He78)c9d6245b17f0ab26eeed345cb00d3359
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 4
|6 P:(DE-He78)98dd16a42af0888dd129e1cd2ee2766a
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 5
|6 P:(DE-He78)64296d0922a2da68074f5de2ccf74487
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 6
|6 P:(DE-He78)683f71d452c83a7f5ec62969c6012466
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 14
|6 P:(DE-He78)fdeeec93551e8f3bad68db88a1130c5d
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 18
|6 P:(DE-He78)8da2eca0bc6341c8681c317fe2b8e27b
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 26
|6 P:(DE-He78)77a2a5b07dcbd46277a18a32372ea154
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 31
|6 P:(DE-He78)7ea9af59d03ec7deb982a0e0562358fa
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 39
|6 P:(DE-He78)ec13544e7fd4c62ac008490a4547e990
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 42
|6 P:(DE-He78)bb6a7a70f976eb8df1769944bf913596
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 49
|6 P:(DE-He78)33c74005e1ce56f7025c4f6be15321b3
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 64
|6 P:(DE-He78)bf6f53ab6b4f57f00e71da7e1594b17e
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 74
|6 P:(DE-He78)1042737c83ba70ec508bdd99f0096864
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 76
|6 P:(DE-He78)04a0b5a49db132d8f00cee326cb743ca
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 77
|6 P:(DE-He78)26a1176cd8450660333a012075050072
913 1 _ |a DE-HGF
|b Gesundheit
|l Krebsforschung
|1 G:(DE-HGF)POF4-310
|0 G:(DE-HGF)POF4-315
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Bildgebung und Radioonkologie
|x 0
914 1 _ |y 2023
920 1 _ |0 I:(DE-He78)E130-20160331
|k E130
|l E130 Intelligente Medizinische Systeme
|x 0
920 1 _ |0 I:(DE-He78)C060-20160331
|k C060
|l C060 Biostatistik
|x 1
920 1 _ |0 I:(DE-He78)E230-20160331
|k E230
|l E230 Medizinische Bildverarbeitung
|x 2
920 1 _ |0 I:(DE-He78)E290-20160331
|k E290
|l NWG Interaktives maschinelles Lernen
|x 3
980 _ _ |a preprint
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)E130-20160331
980 _ _ |a I:(DE-He78)C060-20160331
980 _ _ |a I:(DE-He78)E230-20160331
980 _ _ |a I:(DE-He78)E290-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21