000282690 001__ 282690
000282690 005__ 20240418143016.0
000282690 0247_ $$2doi$$a10.1002/pmic.202300134
000282690 0247_ $$2pmid$$apmid:37679057
000282690 0247_ $$2ISSN$$a1615-9853
000282690 0247_ $$2ISSN$$a1615-9861
000282690 0247_ $$2altmetric$$aaltmetric:153932087
000282690 037__ $$aDKFZ-2023-01836
000282690 041__ $$aEnglish
000282690 082__ $$a540
000282690 1001_ $$0P:(DE-He78)4569ef2919d2438765ad71515f53646b$$aGómez-Zepeda, David$$b0$$eFirst author$$udkfz
000282690 245__ $$aHowDirty: An R package to evaluate molecular contaminants in LC-MS experiments.
000282690 260__ $$aWeinheim$$bWiley VCH$$c2024
000282690 3367_ $$2DRIVER$$aarticle
000282690 3367_ $$2DataCite$$aOutput Types/Journal article
000282690 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1713443376_17806
000282690 3367_ $$2BibTeX$$aARTICLE
000282690 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000282690 3367_ $$00$$2EndNote$$aJournal Article
000282690 500__ $$aHI-TRON / #EA:D190#LA:D191# / 2024 Apr;24(8):e2300134
000282690 520__ $$aContaminants derived from consumables, reagents, and sample handling often negatively affect LC-MS data acquisition. In proteomics experiments, they can markedly reduce identification performance, reproducibility, and quantitative robustness. Here, we introduce a data analysis workflow combining MS1 feature extraction in Skyline with HowDirty, an R-markdown-based tool, that automatically generates an interactive report on the molecular contaminant level in LC-MS data sets. To facilitate the interpretation of the results, the HTML report is self-contained and self-explanatory, including plots that can be easily interpreted. The R package HowDirty is available from https://github.com/DavidGZ1/HowDirty. To demonstrate a showcase scenario for the application of HowDirty, we assessed the impact of ultrafiltration units from different providers on sample purity after filter-assisted sample preparation (FASP) digestion. This allowed us to select the filter units with the lowest contamination risk. Notably, the filter units with the lowest contaminant levels showed higher reproducibility regarding the number of peptides and proteins identified. Overall, HowDirty enables the efficient evaluation of sample quality covering a wide range of common contaminant groups that typically impair LC-MS analyses, facilitating corrective or preventive actions to minimize instrument downtime.
000282690 536__ $$0G:(DE-HGF)POF4-314$$a314 - Immunologie und Krebs (POF4-314)$$cPOF4-314$$fPOF IV$$x0
000282690 588__ $$aDataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
000282690 650_7 $$2Other$$aLC-MS
000282690 650_7 $$2Other$$acontamination
000282690 650_7 $$2Other$$asample preparation
000282690 650_7 $$2Other$$asoftware
000282690 7001_ $$aMichna, Thomas$$b1
000282690 7001_ $$aZiesmann, Tanja$$b2
000282690 7001_ $$aDistler, Ute$$b3
000282690 7001_ $$0P:(DE-He78)74e391c68d7926be83d679f3d8891e33$$aTenzer, Stefan$$b4$$eLast author$$udkfz
000282690 773__ $$0PERI:(DE-600)2037674-1$$a10.1002/pmic.202300134$$gp. 2300134$$n8$$pe2300134$$tProteomics$$v24$$x1615-9853$$y2024
000282690 909CO $$ooai:inrepo02.dkfz.de:282690$$pVDB
000282690 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)4569ef2919d2438765ad71515f53646b$$aDeutsches Krebsforschungszentrum$$b0$$kDKFZ
000282690 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)74e391c68d7926be83d679f3d8891e33$$aDeutsches Krebsforschungszentrum$$b4$$kDKFZ
000282690 9131_ $$0G:(DE-HGF)POF4-314$$1G:(DE-HGF)POF4-310$$2G:(DE-HGF)POF4-300$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vImmunologie und Krebs$$x0
000282690 9141_ $$y2023
000282690 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2023-04-25$$wger
000282690 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2023-04-25
000282690 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-04-25
000282690 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-04-25
000282690 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPROTEOMICS : 2022$$d2023-10-24
000282690 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-10-24
000282690 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-10-24
000282690 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-10-24
000282690 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2023-10-24
000282690 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-10-24
000282690 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2023-10-24
000282690 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2023-10-24
000282690 9202_ $$0I:(DE-He78)D191-20160331$$kD191$$lHi-TRON Immunoproteomik$$x0
000282690 9201_ $$0I:(DE-He78)D190-20160331$$kD190$$lHI-TRON zentral$$x0
000282690 9201_ $$0I:(DE-He78)D191-20160331$$kD191$$lHi-TRON Immunoproteomik$$x1
000282690 9200_ $$0I:(DE-He78)D190-20160331$$kD190$$lHI-TRON zentral$$x0
000282690 980__ $$ajournal
000282690 980__ $$aVDB
000282690 980__ $$aI:(DE-He78)D190-20160331
000282690 980__ $$aI:(DE-He78)D191-20160331
000282690 980__ $$aUNRESTRICTED