001     282690
005     20240418143016.0
024 7 _ |a 10.1002/pmic.202300134
|2 doi
024 7 _ |a pmid:37679057
|2 pmid
024 7 _ |a 1615-9853
|2 ISSN
024 7 _ |a 1615-9861
|2 ISSN
024 7 _ |a altmetric:153932087
|2 altmetric
037 _ _ |a DKFZ-2023-01836
041 _ _ |a English
082 _ _ |a 540
100 1 _ |a Gómez-Zepeda, David
|0 P:(DE-He78)4569ef2919d2438765ad71515f53646b
|b 0
|e First author
|u dkfz
245 _ _ |a HowDirty: An R package to evaluate molecular contaminants in LC-MS experiments.
260 _ _ |a Weinheim
|c 2024
|b Wiley VCH
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1713443376_17806
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a HI-TRON / #EA:D190#LA:D191# / 2024 Apr;24(8):e2300134
520 _ _ |a Contaminants derived from consumables, reagents, and sample handling often negatively affect LC-MS data acquisition. In proteomics experiments, they can markedly reduce identification performance, reproducibility, and quantitative robustness. Here, we introduce a data analysis workflow combining MS1 feature extraction in Skyline with HowDirty, an R-markdown-based tool, that automatically generates an interactive report on the molecular contaminant level in LC-MS data sets. To facilitate the interpretation of the results, the HTML report is self-contained and self-explanatory, including plots that can be easily interpreted. The R package HowDirty is available from https://github.com/DavidGZ1/HowDirty. To demonstrate a showcase scenario for the application of HowDirty, we assessed the impact of ultrafiltration units from different providers on sample purity after filter-assisted sample preparation (FASP) digestion. This allowed us to select the filter units with the lowest contamination risk. Notably, the filter units with the lowest contaminant levels showed higher reproducibility regarding the number of peptides and proteins identified. Overall, HowDirty enables the efficient evaluation of sample quality covering a wide range of common contaminant groups that typically impair LC-MS analyses, facilitating corrective or preventive actions to minimize instrument downtime.
536 _ _ |a 314 - Immunologie und Krebs (POF4-314)
|0 G:(DE-HGF)POF4-314
|c POF4-314
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
650 _ 7 |a LC-MS
|2 Other
650 _ 7 |a contamination
|2 Other
650 _ 7 |a sample preparation
|2 Other
650 _ 7 |a software
|2 Other
700 1 _ |a Michna, Thomas
|b 1
700 1 _ |a Ziesmann, Tanja
|b 2
700 1 _ |a Distler, Ute
|b 3
700 1 _ |a Tenzer, Stefan
|0 P:(DE-He78)74e391c68d7926be83d679f3d8891e33
|b 4
|e Last author
|u dkfz
773 _ _ |a 10.1002/pmic.202300134
|g p. 2300134
|0 PERI:(DE-600)2037674-1
|n 8
|p e2300134
|t Proteomics
|v 24
|y 2024
|x 1615-9853
909 C O |p VDB
|o oai:inrepo02.dkfz.de:282690
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 0
|6 P:(DE-He78)4569ef2919d2438765ad71515f53646b
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 4
|6 P:(DE-He78)74e391c68d7926be83d679f3d8891e33
913 1 _ |a DE-HGF
|b Gesundheit
|l Krebsforschung
|1 G:(DE-HGF)POF4-310
|0 G:(DE-HGF)POF4-314
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Immunologie und Krebs
|x 0
914 1 _ |y 2023
915 _ _ |a DEAL Wiley
|0 StatID:(DE-HGF)3001
|2 StatID
|d 2023-04-25
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2023-04-25
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2023-04-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2023-04-25
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b PROTEOMICS : 2022
|d 2023-10-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-10-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-10-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-10-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2023-10-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-10-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2023-10-24
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2023-10-24
920 2 _ |0 I:(DE-He78)D191-20160331
|k D191
|l Hi-TRON Immunoproteomik
|x 0
920 1 _ |0 I:(DE-He78)D190-20160331
|k D190
|l HI-TRON zentral
|x 0
920 1 _ |0 I:(DE-He78)D191-20160331
|k D191
|l Hi-TRON Immunoproteomik
|x 1
920 0 _ |0 I:(DE-He78)D190-20160331
|k D190
|l HI-TRON zentral
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)D190-20160331
980 _ _ |a I:(DE-He78)D191-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21