001     282691
005     20240229155045.0
024 7 _ |a 10.3324/haematol.2022.279437
|2 doi
024 7 _ |a pmid:36475518
|2 pmid
024 7 _ |a pmc:PMC10483369
|2 pmc
024 7 _ |a 0390-6078
|2 ISSN
024 7 _ |a 1592-8721
|2 ISSN
024 7 _ |a altmetric:139997867
|2 altmetric
037 _ _ |a DKFZ-2023-01837
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a Rein, Avigail
|b 0
245 _ _ |a Cellular and metabolic characteristics of pre-leukemic hematopoietic progenitors with GATA2 haploinsufficiency.
260 _ _ |a Pavia
|c 2023
|b Ferrata Storti Foundation
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1694184621_27135
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Mono-allelic germline disruptions of the transcription factor GATA2 result in a propensity for developing myelodysplastic syndrome (MDS) and acute myeloid leukemia (AML), affecting more than 85% of carriers. How a partial loss of GATA2 functionality enables leukemic transformation years later is unclear. This question has remained unsolved mainly due to the lack of informative models, as Gata2 heterozygote mice do not develop hematologic malignancies. Here we show that two different germline Gata2 mutations (TgErg/Gata2het and TgErg/Gata2L359V) accelerate AML in mice expressing the human hematopoietic stem cell regulator ERG. Analysis of Erg/Gata2het fetal liver and bone marrow-derived hematopoietic cells revealed a distinct pre-leukemic phenotype. This was characterized by enhanced transition from stem to progenitor state, increased proliferation, and a striking mitochondrial phenotype, consisting of highly expressed oxidative-phosphorylation-related gene sets, elevated oxygen consumption rates, and notably, markedly distorted mitochondrial morphology. Importantly, the same mitochondrial gene-expression signature was observed in human AML harboring GATA2 aberrations. Similar to the observations in mice, non-leukemic bone marrows from children with germline GATA2 mutation demonstrated marked mitochondrial abnormalities. Thus, we observed the tumor suppressive effects of GATA2 in two germline Gata2 genetic mouse models. As oncogenic mutations often accumulate with age, GATA2 deficiency-mediated priming of hematopoietic cells for oncogenic transformation may explain the earlier occurrence of MDS/AML in patients with GATA2 germline mutation. The mitochondrial phenotype is a potential therapeutic opportunity for the prevention of leukemic transformation in these patients.
536 _ _ |a 311 - Zellbiologie und Tumorbiologie (POF4-311)
|0 G:(DE-HGF)POF4-311
|c POF4-311
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
650 _ 7 |a GATA2 Transcription Factor
|2 NLM Chemicals
650 _ 7 |a GATA2 protein, human
|2 NLM Chemicals
650 _ 2 |a Child
|2 MeSH
650 _ 2 |a Humans
|2 MeSH
650 _ 2 |a Mice
|2 MeSH
650 _ 2 |a Animals
|2 MeSH
650 _ 2 |a GATA2 Deficiency: genetics
|2 MeSH
650 _ 2 |a Myelodysplastic Syndromes: pathology
|2 MeSH
650 _ 2 |a Leukemia, Myeloid, Acute: genetics
|2 MeSH
650 _ 2 |a Leukemia, Myeloid, Acute: metabolism
|2 MeSH
650 _ 2 |a Bone Marrow: pathology
|2 MeSH
650 _ 2 |a Hematopoietic Stem Cells: metabolism
|2 MeSH
650 _ 2 |a Cell Transformation, Neoplastic: genetics
|2 MeSH
650 _ 2 |a Cell Transformation, Neoplastic: metabolism
|2 MeSH
650 _ 2 |a GATA2 Transcription Factor: genetics
|2 MeSH
650 _ 2 |a GATA2 Transcription Factor: metabolism
|2 MeSH
700 1 _ |a Geron, Ifat
|b 1
700 1 _ |a Kugler, Eitan
|b 2
700 1 _ |a Fishman, Hila
|b 3
700 1 _ |a Gottlieb, Eyal
|b 4
700 1 _ |a Abramovich, Ifat
|b 5
700 1 _ |a Giladi, Amir
|b 6
700 1 _ |a Amit, Ido
|b 7
700 1 _ |a Mulet-Lazaro, Roger
|b 8
700 1 _ |a Delwel, Ruud
|b 9
700 1 _ |a Gröschel, Stefan
|0 P:(DE-He78)5120a331b1c28045c8ca6a8b1c73c95f
|b 10
700 1 _ |a Levin-Zaidman, Smadar
|b 11
700 1 _ |a Dezorella, Nili
|b 12
700 1 _ |a Holdengreber, Vered
|b 13
700 1 _ |a Rao, Tata Nageswara
|b 14
700 1 _ |a Yacobovich, Joanne
|b 15
700 1 _ |a Steinberg-Shemer, Orna
|b 16
700 1 _ |a Huang, Qiu-Hua
|b 17
700 1 _ |a Tan, Yun
|b 18
700 1 _ |a Chen, Sai-Juan
|b 19
700 1 _ |a Izraeli, Shai
|b 20
700 1 _ |a Birger, Yehudit
|b 21
773 _ _ |a 10.3324/haematol.2022.279437
|g Vol. 108, no. 9
|0 PERI:(DE-600)2805244-4
|n 9
|p 2316-2330
|t Haematologica
|v 108
|y 2023
|x 0390-6078
909 C O |o oai:inrepo02.dkfz.de:282691
|p VDB
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 10
|6 P:(DE-He78)5120a331b1c28045c8ca6a8b1c73c95f
913 1 _ |a DE-HGF
|b Gesundheit
|l Krebsforschung
|1 G:(DE-HGF)POF4-310
|0 G:(DE-HGF)POF4-311
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Zellbiologie und Tumorbiologie
|x 0
914 1 _ |y 2023
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2023-03-30
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2023-03-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2023-03-30
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2023-03-30
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2023-03-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-08-23
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-08-23
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0320
|2 StatID
|b PubMed Central
|d 2023-08-23
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2023-06-05T07:07:08Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2023-06-05T07:07:08Z
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Peer review
|d 2023-06-05T07:07:08Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-08-23
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2023-08-23
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-08-23
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2023-08-23
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1110
|2 StatID
|b Current Contents - Clinical Medicine
|d 2023-08-23
920 1 _ |0 I:(DE-He78)A380-20160331
|k A380
|l NWG Molekulare Leukämogenese
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)A380-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21