Home > Publications database > Cellular and metabolic characteristics of pre-leukemic hematopoietic progenitors with GATA2 haploinsufficiency. > print |
001 | 282691 | ||
005 | 20240229155045.0 | ||
024 | 7 | _ | |a 10.3324/haematol.2022.279437 |2 doi |
024 | 7 | _ | |a pmid:36475518 |2 pmid |
024 | 7 | _ | |a pmc:PMC10483369 |2 pmc |
024 | 7 | _ | |a 0390-6078 |2 ISSN |
024 | 7 | _ | |a 1592-8721 |2 ISSN |
024 | 7 | _ | |a altmetric:139997867 |2 altmetric |
037 | _ | _ | |a DKFZ-2023-01837 |
041 | _ | _ | |a English |
082 | _ | _ | |a 610 |
100 | 1 | _ | |a Rein, Avigail |b 0 |
245 | _ | _ | |a Cellular and metabolic characteristics of pre-leukemic hematopoietic progenitors with GATA2 haploinsufficiency. |
260 | _ | _ | |a Pavia |c 2023 |b Ferrata Storti Foundation |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1694184621_27135 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a Mono-allelic germline disruptions of the transcription factor GATA2 result in a propensity for developing myelodysplastic syndrome (MDS) and acute myeloid leukemia (AML), affecting more than 85% of carriers. How a partial loss of GATA2 functionality enables leukemic transformation years later is unclear. This question has remained unsolved mainly due to the lack of informative models, as Gata2 heterozygote mice do not develop hematologic malignancies. Here we show that two different germline Gata2 mutations (TgErg/Gata2het and TgErg/Gata2L359V) accelerate AML in mice expressing the human hematopoietic stem cell regulator ERG. Analysis of Erg/Gata2het fetal liver and bone marrow-derived hematopoietic cells revealed a distinct pre-leukemic phenotype. This was characterized by enhanced transition from stem to progenitor state, increased proliferation, and a striking mitochondrial phenotype, consisting of highly expressed oxidative-phosphorylation-related gene sets, elevated oxygen consumption rates, and notably, markedly distorted mitochondrial morphology. Importantly, the same mitochondrial gene-expression signature was observed in human AML harboring GATA2 aberrations. Similar to the observations in mice, non-leukemic bone marrows from children with germline GATA2 mutation demonstrated marked mitochondrial abnormalities. Thus, we observed the tumor suppressive effects of GATA2 in two germline Gata2 genetic mouse models. As oncogenic mutations often accumulate with age, GATA2 deficiency-mediated priming of hematopoietic cells for oncogenic transformation may explain the earlier occurrence of MDS/AML in patients with GATA2 germline mutation. The mitochondrial phenotype is a potential therapeutic opportunity for the prevention of leukemic transformation in these patients. |
536 | _ | _ | |a 311 - Zellbiologie und Tumorbiologie (POF4-311) |0 G:(DE-HGF)POF4-311 |c POF4-311 |f POF IV |x 0 |
588 | _ | _ | |a Dataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de |
650 | _ | 7 | |a GATA2 Transcription Factor |2 NLM Chemicals |
650 | _ | 7 | |a GATA2 protein, human |2 NLM Chemicals |
650 | _ | 2 | |a Child |2 MeSH |
650 | _ | 2 | |a Humans |2 MeSH |
650 | _ | 2 | |a Mice |2 MeSH |
650 | _ | 2 | |a Animals |2 MeSH |
650 | _ | 2 | |a GATA2 Deficiency: genetics |2 MeSH |
650 | _ | 2 | |a Myelodysplastic Syndromes: pathology |2 MeSH |
650 | _ | 2 | |a Leukemia, Myeloid, Acute: genetics |2 MeSH |
650 | _ | 2 | |a Leukemia, Myeloid, Acute: metabolism |2 MeSH |
650 | _ | 2 | |a Bone Marrow: pathology |2 MeSH |
650 | _ | 2 | |a Hematopoietic Stem Cells: metabolism |2 MeSH |
650 | _ | 2 | |a Cell Transformation, Neoplastic: genetics |2 MeSH |
650 | _ | 2 | |a Cell Transformation, Neoplastic: metabolism |2 MeSH |
650 | _ | 2 | |a GATA2 Transcription Factor: genetics |2 MeSH |
650 | _ | 2 | |a GATA2 Transcription Factor: metabolism |2 MeSH |
700 | 1 | _ | |a Geron, Ifat |b 1 |
700 | 1 | _ | |a Kugler, Eitan |b 2 |
700 | 1 | _ | |a Fishman, Hila |b 3 |
700 | 1 | _ | |a Gottlieb, Eyal |b 4 |
700 | 1 | _ | |a Abramovich, Ifat |b 5 |
700 | 1 | _ | |a Giladi, Amir |b 6 |
700 | 1 | _ | |a Amit, Ido |b 7 |
700 | 1 | _ | |a Mulet-Lazaro, Roger |b 8 |
700 | 1 | _ | |a Delwel, Ruud |b 9 |
700 | 1 | _ | |a Gröschel, Stefan |0 P:(DE-He78)5120a331b1c28045c8ca6a8b1c73c95f |b 10 |
700 | 1 | _ | |a Levin-Zaidman, Smadar |b 11 |
700 | 1 | _ | |a Dezorella, Nili |b 12 |
700 | 1 | _ | |a Holdengreber, Vered |b 13 |
700 | 1 | _ | |a Rao, Tata Nageswara |b 14 |
700 | 1 | _ | |a Yacobovich, Joanne |b 15 |
700 | 1 | _ | |a Steinberg-Shemer, Orna |b 16 |
700 | 1 | _ | |a Huang, Qiu-Hua |b 17 |
700 | 1 | _ | |a Tan, Yun |b 18 |
700 | 1 | _ | |a Chen, Sai-Juan |b 19 |
700 | 1 | _ | |a Izraeli, Shai |b 20 |
700 | 1 | _ | |a Birger, Yehudit |b 21 |
773 | _ | _ | |a 10.3324/haematol.2022.279437 |g Vol. 108, no. 9 |0 PERI:(DE-600)2805244-4 |n 9 |p 2316-2330 |t Haematologica |v 108 |y 2023 |x 0390-6078 |
909 | C | O | |o oai:inrepo02.dkfz.de:282691 |p VDB |
910 | 1 | _ | |a Deutsches Krebsforschungszentrum |0 I:(DE-588b)2036810-0 |k DKFZ |b 10 |6 P:(DE-He78)5120a331b1c28045c8ca6a8b1c73c95f |
913 | 1 | _ | |a DE-HGF |b Gesundheit |l Krebsforschung |1 G:(DE-HGF)POF4-310 |0 G:(DE-HGF)POF4-311 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-300 |4 G:(DE-HGF)POF |v Zellbiologie und Tumorbiologie |x 0 |
914 | 1 | _ | |y 2023 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1190 |2 StatID |b Biological Abstracts |d 2023-03-30 |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2023-03-30 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2023-03-30 |
915 | _ | _ | |a Article Processing Charges |0 StatID:(DE-HGF)0561 |2 StatID |d 2023-03-30 |
915 | _ | _ | |a Fees |0 StatID:(DE-HGF)0700 |2 StatID |d 2023-03-30 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2023-08-23 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2023-08-23 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0320 |2 StatID |b PubMed Central |d 2023-08-23 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0501 |2 StatID |b DOAJ Seal |d 2023-06-05T07:07:08Z |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0500 |2 StatID |b DOAJ |d 2023-06-05T07:07:08Z |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b DOAJ : Peer review |d 2023-06-05T07:07:08Z |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2023-08-23 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1050 |2 StatID |b BIOSIS Previews |d 2023-08-23 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2023-08-23 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1030 |2 StatID |b Current Contents - Life Sciences |d 2023-08-23 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1110 |2 StatID |b Current Contents - Clinical Medicine |d 2023-08-23 |
920 | 1 | _ | |0 I:(DE-He78)A380-20160331 |k A380 |l NWG Molekulare Leukämogenese |x 0 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a I:(DE-He78)A380-20160331 |
980 | _ | _ | |a UNRESTRICTED |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|