001     282898
005     20240229155047.0
024 7 _ |a 10.1016/j.breast.2023.103578
|2 doi
024 7 _ |a pmid:37713940
|2 pmid
024 7 _ |a 0960-9776
|2 ISSN
024 7 _ |a 1532-3080
|2 ISSN
024 7 _ |a altmetric:154127421
|2 altmetric
037 _ _ |a DKFZ-2023-01891
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a Jaikuna, Tanwiwat
|b 0
245 _ _ |a Contouring variation affects estimates of normal tissue complication probability for breast fibrosis after radiotherapy.
260 _ _ |a Amsterdam [u.a.]
|c 2023
|b Elsevier
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1695103508_15142
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Normal tissue complication probability (NTCP) models can be useful to estimate the risk of fibrosis after breast-conserving surgery (BCS) and radiotherapy (RT) to the breast. However, they are subject to uncertainties. We present the impact of contouring variation on the prediction of fibrosis.280 breast cancer patients treated BCS-RT were included. Nine Clinical Target Volume (CTV) contours were created for each patient: i) CTV_crop (reference), cropped 5 mm from the skin and ii) CTV_skin, uncropped and including the skin, iii) segmenting the 95% isodose (Iso95%) and iv) 3 different auto-contouring atlases generating uncropped and cropped contours (Atlas_skin/Atlas_crop). To illustrate the impact of contour variation on NTCP estimates, we applied two equations predicting fibrosis grade ≥ 2 at 5 years, based on Lyman-Kutcher-Burman (LKB) and Relative Seriality (RS) models, respectively, to each contour. Differences were evaluated using repeated-measures ANOVA. For completeness, the association between observed fibrosis events and NTCP estimates was also evaluated using logistic regression.There were minimal differences between contours when the same contouring approach was followed (cropped and uncropped). CTV_skin and Atlas_skin contours had lower NTCP estimates (-3.92%, IQR 4.00, p < 0.05) compared to CTV_crop. No significant difference was observed for Atlas_crop and Iso95% contours compared to CTV_crop. For the whole cohort, NTCP estimates varied between 5.3% and 49.5% (LKB) or 2.2% and 49.6% (RS) depending on the choice of contours. NTCP estimates for individual patients varied by up to a factor of 4. Estimates from 'skin' contours showed higher agreement with observed events.Contour variations can lead to significantly different NTCP estimates for breast fibrosis, highlighting the importance of standardising breast contours before developing and/or applying NTCP models.
536 _ _ |a 313 - Krebsrisikofaktoren und Prävention (POF4-313)
|0 G:(DE-HGF)POF4-313
|c POF4-313
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
650 _ 7 |a Breast cancer
|2 Other
650 _ 7 |a Fibrosis
|2 Other
650 _ 7 |a Inter-observer variation
|2 Other
650 _ 7 |a Late effects
|2 Other
650 _ 7 |a NTCP modelling
|2 Other
650 _ 7 |a Radiotherapy
|2 Other
700 1 _ |a Osorio, Eliana Vasquez
|b 1
700 1 _ |a Azria, David
|b 2
700 1 _ |a Chang-Claude, Jenny
|0 P:(DE-He78)c259d6cc99edf5c7bc7ce22c7f87c253
|b 3
|u dkfz
700 1 _ |a De Santis, Maria Carmen
|b 4
700 1 _ |a Gutiérrez-Enríquez, Sara
|b 5
700 1 _ |a van Herk, Marcel
|b 6
700 1 _ |a Hoskin, Peter
|b 7
700 1 _ |a Lambrecht, Maarten
|b 8
700 1 _ |a Lingard, Zoe
|b 9
700 1 _ |a Seibold, Petra
|0 P:(DE-He78)fd17a8dbf8d08ea5bb656dfef7398215
|b 10
|u dkfz
700 1 _ |a Seoane, Alejandro
|b 11
700 1 _ |a Sperk, Elena
|b 12
700 1 _ |a Symonds, R Paul
|b 13
700 1 _ |a Talbot, Christopher J
|b 14
700 1 _ |a Rancati, Tiziana
|b 15
700 1 _ |a Rattay, Tim
|b 16
700 1 _ |a Reyes, Victoria
|b 17
700 1 _ |a Rosenstein, Barry S
|b 18
700 1 _ |a de Ruysscher, Dirk
|b 19
700 1 _ |a Vega, Ana
|b 20
700 1 _ |a Veldeman, Liv
|b 21
700 1 _ |a Webb, Adam
|b 22
700 1 _ |a West, Catharine M L
|b 23
700 1 _ |a Aznar, Marianne C
|b 24
773 _ _ |a 10.1016/j.breast.2023.103578
|g Vol. 72, p. 103578 -
|0 PERI:(DE-600)2009043-2
|p 103578
|t The breast
|v 72
|y 2023
|x 0960-9776
909 C O |o oai:inrepo02.dkfz.de:282898
|p VDB
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 3
|6 P:(DE-He78)c259d6cc99edf5c7bc7ce22c7f87c253
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 10
|6 P:(DE-He78)fd17a8dbf8d08ea5bb656dfef7398215
913 1 _ |a DE-HGF
|b Gesundheit
|l Krebsforschung
|1 G:(DE-HGF)POF4-310
|0 G:(DE-HGF)POF4-313
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Krebsrisikofaktoren und Prävention
|x 0
914 1 _ |y 2023
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2022-11-11
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2022-11-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2022-11-11
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2022-11-11
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2022-11-11
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2023-10-22
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-10-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0320
|2 StatID
|b PubMed Central
|d 2023-10-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2023-04-12T14:49:13Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2023-04-12T14:49:13Z
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Anonymous peer review
|d 2023-04-12T14:49:13Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-10-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2023-10-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-10-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1110
|2 StatID
|b Current Contents - Clinical Medicine
|d 2023-10-22
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b BREAST : 2022
|d 2023-10-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-10-22
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2023-10-22
920 1 _ |0 I:(DE-He78)C020-20160331
|k C020
|l C020 Epidemiologie von Krebs
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)C020-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21