000283158 001__ 283158
000283158 005__ 20240304140603.0
000283158 0247_ $$2doi$$a10.1002/mp.16754
000283158 0247_ $$2pmid$$apmid:37748042
000283158 0247_ $$2ISSN$$a0094-2405
000283158 0247_ $$2ISSN$$a1522-8541
000283158 0247_ $$2ISSN$$a2473-4209
000283158 037__ $$aDKFZ-2023-01944
000283158 041__ $$aEnglish
000283158 082__ $$a610
000283158 1001_ $$aLysakovski, Peter$$b0
000283158 245__ $$aDevelopment and validation of MonteRay, a fast Monte Carlo dose engine for carbon ion beam radiotherapy.
000283158 260__ $$aCollege Park, Md.$$bAAPM$$c2024
000283158 3367_ $$2DRIVER$$aarticle
000283158 3367_ $$2DataCite$$aOutput Types/Journal article
000283158 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1709557518_15775
000283158 3367_ $$2BibTeX$$aARTICLE
000283158 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000283158 3367_ $$00$$2EndNote$$aJournal Article
000283158 500__ $$a#LA:E210# / 2024 Feb;51(2):1433-1449
000283158 520__ $$aMonte Carlo (MC) simulations are considered the gold-standard for accuracy in radiotherapy dose calculation; so far however, no commercial treatment planning system (TPS) provides a fast MC for supporting clinical practice in carbon ion therapy.To extend and validate the in-house developed fast MC dose engine MonteRay for carbon ion therapy, including physical and biological dose calculation.MonteRay is a CPU MC dose calculation engine written in C++ that is capable of simulating therapeutic proton, helium and carbon ion beams. In this work, development steps taken to include carbon ions in MonteRay are presented. Dose distributions computed with MonteRay are evaluated using a comprehensive validation dataset, including various measurements (pristine Bragg peaks, spread out Bragg peaks in water and behind an anthropomorphic phantom) and simulations of a patient plan. The latter includes both physical and biological dose comparisons. Runtimes of MonteRay were evaluated against those of FLUKA MC on a standard benchmark problem.Dosimetric comparisons between MonteRay and measurements demonstrated good agreement. In terms of pristine Bragg peaks, mean errors between simulated and measured integral depth dose distributions were between -2.3% and +2.7%. Comparing SOBPs at 5, 12.5 and 20 cm depth, mean absolute relative dose differences were 0.9%, 0.7% and 1.6% respectively. Comparison against measurements behind an anthropomorphic head phantom revealed mean absolute dose differences of 1.2 % ± 1.1 % $1.2\% \pm 1.1\;\% \;$ with global 3%/3 mm 3D-γ passing rates of 99.3%, comparable to those previously reached with FLUKA (98.9%). Comparisons against dose predictions computed with the clinical treatment planning tool RayStation 11B for a meningioma patient plan revealed excellent local 1%/1 mm 3D-γ passing rates of 98% for physical and 94% for biological dose. In terms of runtime, MonteRay achieved speedups against reference FLUKA simulations ranging from 14× to 72×, depending on the beam's energy and the step size chosen.Validations against clinical dosimetric measurements in homogeneous and heterogeneous scenarios and clinical TPS calculations have proven the validity of the physical models implemented in MonteRay. To conclude, MonteRay is viable as a fast secondary MC engine for supporting clinical practice in proton, helium and carbon ion radiotherapy.
000283158 536__ $$0G:(DE-HGF)POF4-315$$a315 - Bildgebung und Radioonkologie (POF4-315)$$cPOF4-315$$fPOF IV$$x0
000283158 588__ $$aDataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
000283158 650_7 $$2Other$$acarbon ions
000283158 650_7 $$2Other$$adose calculation
000283158 650_7 $$2Other$$afast Monte Carlo
000283158 650_7 $$2Other$$aradiotherapy
000283158 7001_ $$aKopp, Benedikt$$b1
000283158 7001_ $$0P:(DE-He78)b907c008f5a279f1f3539ca77ec858dc$$aTessonnier, Thomas$$b2$$udkfz
000283158 7001_ $$0P:(DE-HGF)0$$aMein, Stewart$$b3
000283158 7001_ $$aFerrari, Alfredo$$b4
000283158 7001_ $$aHaberer, Thomas$$b5
000283158 7001_ $$0P:(DE-He78)8714da4e45acfa36ce87c291443a9218$$aDebus, Jürgen$$b6$$udkfz
000283158 7001_ $$0P:(DE-He78)8d6c2aceda79e88defe1e8c0fcc39d59$$aMairani, Andrea$$b7$$eLast author$$udkfz
000283158 773__ $$0PERI:(DE-600)1466421-5$$a10.1002/mp.16754$$gp. mp.16754$$n2$$p1433-1449$$tMedical physics$$v51$$x0094-2405$$y2024
000283158 909CO $$ooai:inrepo02.dkfz.de:283158$$pVDB
000283158 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)b907c008f5a279f1f3539ca77ec858dc$$aDeutsches Krebsforschungszentrum$$b2$$kDKFZ
000283158 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-HGF)0$$aDeutsches Krebsforschungszentrum$$b3$$kDKFZ
000283158 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)8714da4e45acfa36ce87c291443a9218$$aDeutsches Krebsforschungszentrum$$b6$$kDKFZ
000283158 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)8d6c2aceda79e88defe1e8c0fcc39d59$$aDeutsches Krebsforschungszentrum$$b7$$kDKFZ
000283158 9131_ $$0G:(DE-HGF)POF4-315$$1G:(DE-HGF)POF4-310$$2G:(DE-HGF)POF4-300$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vBildgebung und Radioonkologie$$x0
000283158 9141_ $$y2023
000283158 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2022-11-12$$wger
000283158 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2022-11-12
000283158 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2022-11-12
000283158 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bMED PHYS : 2022$$d2023-10-21
000283158 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-10-21
000283158 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-10-21
000283158 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central$$d2023-10-21
000283158 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2023-10-21
000283158 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2023-10-21
000283158 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-10-21
000283158 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-10-21
000283158 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2023-10-21
000283158 915__ $$0StatID:(DE-HGF)1110$$2StatID$$aDBCoverage$$bCurrent Contents - Clinical Medicine$$d2023-10-21
000283158 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2023-10-21
000283158 9202_ $$0I:(DE-He78)E210-20160331$$kE210$$lE210 KKE Translationale Radioonkologie$$x0
000283158 9201_ $$0I:(DE-He78)E210-20160331$$kE210$$lE210 KKE Translationale Radioonkologie$$x0
000283158 9201_ $$0I:(DE-He78)HD01-20160331$$kHD01$$lDKTK HD zentral$$x1
000283158 9201_ $$0I:(DE-He78)E050-20160331$$kE050$$lE050 KKE Strahlentherapie$$x2
000283158 980__ $$ajournal
000283158 980__ $$aVDB
000283158 980__ $$aI:(DE-He78)E210-20160331
000283158 980__ $$aI:(DE-He78)HD01-20160331
000283158 980__ $$aI:(DE-He78)E050-20160331
000283158 980__ $$aUNRESTRICTED