000283163 001__ 283163
000283163 005__ 20240229155049.0
000283163 0247_ $$2doi$$a10.1038/s41698-023-00451-3
000283163 0247_ $$2pmid$$apmid:37752266
000283163 0247_ $$2altmetric$$aaltmetric:154709929
000283163 037__ $$aDKFZ-2023-01946
000283163 041__ $$aEnglish
000283163 082__ $$a610
000283163 1001_ $$0P:(DE-He78)551f38237e85bb25b4502ba8fbb88f4f$$aHöhn, Julia$$b0$$eFirst author$$udkfz
000283163 245__ $$aColorectal cancer risk stratification on histological slides based on survival curves predicted by deep learning.
000283163 260__ $$a[London]$$bSpringer Nature$$c2023
000283163 3367_ $$2DRIVER$$aarticle
000283163 3367_ $$2DataCite$$aOutput Types/Journal article
000283163 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1695823380_7981
000283163 3367_ $$2BibTeX$$aARTICLE
000283163 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000283163 3367_ $$00$$2EndNote$$aJournal Article
000283163 500__ $$a#EA:C140#LA:C140#LA:C070#
000283163 520__ $$aStudies have shown that colorectal cancer prognosis can be predicted by deep learning-based analysis of histological tissue sections of the primary tumor. So far, this has been achieved using a binary prediction. Survival curves might contain more detailed information and thus enable a more fine-grained risk prediction. Therefore, we established survival curve-based CRC survival predictors and benchmarked them against standard binary survival predictors, comparing their performance extensively on the clinical high and low risk subsets of one internal and three external cohorts. Survival curve-based risk prediction achieved a very similar risk stratification to binary risk prediction for this task. Exchanging other components of the pipeline, namely input tissue and feature extractor, had largely identical effects on model performance independently of the type of risk prediction. An ensemble of all survival curve-based models exhibited a more robust performance, as did a similar ensemble based on binary risk prediction. Patients could be further stratified within clinical risk groups. However, performance still varied across cohorts, indicating limited generalization of all investigated image analysis pipelines, whereas models using clinical data performed robustly on all cohorts.
000283163 536__ $$0G:(DE-HGF)POF4-313$$a313 - Krebsrisikofaktoren und Prävention (POF4-313)$$cPOF4-313$$fPOF IV$$x0
000283163 588__ $$aDataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
000283163 7001_ $$0P:(DE-He78)8e2078af783ff2be822e7799c43bc86a$$aKrieghoff-Henning, Eva$$b1$$eFirst author$$udkfz
000283163 7001_ $$0P:(DE-He78)3c4243de81f11e32405a8ad3bd617e2f$$aWies, Christoph$$b2$$udkfz
000283163 7001_ $$0P:(DE-He78)29466f5cfe110ed866c860a358a88825$$aKiehl, Lennard$$b3$$udkfz
000283163 7001_ $$0P:(DE-He78)0fffa4b46f40b3111930bdebe002ed1f$$aHetz, Martin J$$b4$$udkfz
000283163 7001_ $$0P:(DE-He78)73b5efbed9fd28568181090333aff1c3$$aBucher, Tabea$$b5$$udkfz
000283163 7001_ $$00000-0002-9912-2344$$aJonnagaddala, Jitendra$$b6
000283163 7001_ $$aZatloukal, Kurt$$b7
000283163 7001_ $$00000-0002-9691-4872$$aMüller, Heimo$$b8
000283163 7001_ $$00000-0003-2718-7648$$aPlass, Markus$$b9
000283163 7001_ $$00000-0002-8277-9630$$aJungwirth, Emilian$$b10
000283163 7001_ $$aGaiser, Timo$$b11
000283163 7001_ $$aSteeg, Matthias$$b12
000283163 7001_ $$0P:(DE-He78)457c042884c901eb0a02c18bb1d30103$$aHolland-Letz, Tim$$b13$$udkfz
000283163 7001_ $$0P:(DE-He78)90d5535ff896e70eed81f4a4f6f22ae2$$aBrenner, Hermann$$b14$$udkfz
000283163 7001_ $$0P:(DE-He78)6c5d058b7552d071a7fa4c5e943fff0f$$aHoffmeister, Michael$$b15$$eLast author$$udkfz
000283163 7001_ $$0P:(DE-He78)1e33961c8780aca9b76d776d1fdc1ebb$$aBrinker, Titus$$b16$$eLast author$$udkfz
000283163 773__ $$0PERI:(DE-600)2891458-2$$a10.1038/s41698-023-00451-3$$gVol. 7, no. 1, p. 98$$n1$$p98$$tnpj precision oncology$$v7$$x2397-768X$$y2023
000283163 909CO $$ooai:inrepo02.dkfz.de:283163$$pVDB
000283163 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)551f38237e85bb25b4502ba8fbb88f4f$$aDeutsches Krebsforschungszentrum$$b0$$kDKFZ
000283163 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)8e2078af783ff2be822e7799c43bc86a$$aDeutsches Krebsforschungszentrum$$b1$$kDKFZ
000283163 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)3c4243de81f11e32405a8ad3bd617e2f$$aDeutsches Krebsforschungszentrum$$b2$$kDKFZ
000283163 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)29466f5cfe110ed866c860a358a88825$$aDeutsches Krebsforschungszentrum$$b3$$kDKFZ
000283163 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)0fffa4b46f40b3111930bdebe002ed1f$$aDeutsches Krebsforschungszentrum$$b4$$kDKFZ
000283163 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)73b5efbed9fd28568181090333aff1c3$$aDeutsches Krebsforschungszentrum$$b5$$kDKFZ
000283163 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)457c042884c901eb0a02c18bb1d30103$$aDeutsches Krebsforschungszentrum$$b13$$kDKFZ
000283163 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)90d5535ff896e70eed81f4a4f6f22ae2$$aDeutsches Krebsforschungszentrum$$b14$$kDKFZ
000283163 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)6c5d058b7552d071a7fa4c5e943fff0f$$aDeutsches Krebsforschungszentrum$$b15$$kDKFZ
000283163 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)1e33961c8780aca9b76d776d1fdc1ebb$$aDeutsches Krebsforschungszentrum$$b16$$kDKFZ
000283163 9131_ $$0G:(DE-HGF)POF4-313$$1G:(DE-HGF)POF4-310$$2G:(DE-HGF)POF4-300$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vKrebsrisikofaktoren und Prävention$$x0
000283163 9141_ $$y2023
000283163 915__ $$0LIC:(DE-HGF)CCBYNV$$2V:(DE-HGF)$$aCreative Commons Attribution CC BY (No Version)$$bDOAJ$$d2021-10-13T14:35:09Z
000283163 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2023-03-31
000283163 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-03-31
000283163 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-03-31
000283163 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2023-03-31
000283163 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2023-03-31
000283163 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNPJ PRECIS ONCOL : 2022$$d2023-10-27
000283163 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-10-27
000283163 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-10-27
000283163 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central$$d2023-10-27
000283163 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2023-04-12T15:13:05Z
000283163 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2023-04-12T15:13:05Z
000283163 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Anonymous peer review$$d2023-04-12T15:13:05Z
000283163 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-10-27
000283163 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2023-10-27
000283163 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-10-27
000283163 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2023-10-27
000283163 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bNPJ PRECIS ONCOL : 2022$$d2023-10-27
000283163 9202_ $$0I:(DE-He78)C140-20160331$$kC140$$lNWG Digitale Biomarker in der Onkologie$$x0
000283163 9202_ $$0I:(DE-He78)C070-20160331$$kC070$$lC070 Klinische Epidemiologie und Alternf.$$x1
000283163 9200_ $$0I:(DE-He78)C140-20160331$$kC140$$lNWG Digitale Biomarker in der Onkologie$$x0
000283163 9201_ $$0I:(DE-He78)C140-20160331$$kC140$$lNWG Digitale Biomarker in der Onkologie$$x0
000283163 9201_ $$0I:(DE-He78)C060-20160331$$kC060$$lC060 Biostatistik$$x1
000283163 9201_ $$0I:(DE-He78)C070-20160331$$kC070$$lC070 Klinische Epidemiologie und Alternf.$$x2
000283163 9201_ $$0I:(DE-He78)C120-20160331$$kC120$$lPräventive Onkologie$$x3
000283163 9201_ $$0I:(DE-He78)HD01-20160331$$kHD01$$lDKTK HD zentral$$x4
000283163 980__ $$ajournal
000283163 980__ $$aVDB
000283163 980__ $$aI:(DE-He78)C140-20160331
000283163 980__ $$aI:(DE-He78)C060-20160331
000283163 980__ $$aI:(DE-He78)C070-20160331
000283163 980__ $$aI:(DE-He78)C120-20160331
000283163 980__ $$aI:(DE-He78)HD01-20160331
000283163 980__ $$aUNRESTRICTED