000283203 001__ 283203 000283203 005__ 20240229155050.0 000283203 0247_ $$2doi$$a10.1002/mrm.29863 000283203 0247_ $$2pmid$$apmid:37753844 000283203 0247_ $$2ISSN$$a1522-2594 000283203 0247_ $$2ISSN$$a0740-3194 000283203 037__ $$aDKFZ-2023-01968 000283203 041__ $$aEnglish 000283203 082__ $$a610 000283203 1001_ $$00000-0002-0847-2729$$aTkotz, Katharina$$b0 000283203 245__ $$aMulti-echo-based fat artifact correction for CEST MRI at 7 T. 000283203 260__ $$aNew York, NY [u.a.]$$bWiley-Liss$$c2024 000283203 3367_ $$2DRIVER$$aarticle 000283203 3367_ $$2DataCite$$aOutput Types/Journal article 000283203 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1701341444_1991 000283203 3367_ $$2BibTeX$$aARTICLE 000283203 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000283203 3367_ $$00$$2EndNote$$aJournal Article 000283203 500__ $$a#LA:E020# / 2024 Feb;91(2):481-496 000283203 520__ $$aCEST MRI is influenced by fat signal, which can reduce the apparent CEST contrast or lead to pseudo-CEST effects. Our goal was to develop a fat artifact correction based on multi-echo fat-water separation that functions stably for 7 T knee MRI data.Our proposed algorithm utilizes the full complex data and a phase demodulation with an off-resonance map estimation based on the Z-spectra prior to fat-water separation to achieve stable fat artifact correction. Our method was validated and compared to multi-echo-based methods originally proposed for 3 T by Bloch-McConnell simulations and phantom measurements. Moreover, the method was applied to in vivo 7 T knee MRI examinations and compared to Gaussian fat saturation and a published single-echo Z-spectrum-based fat artifact correction method.Phase demodulation prior to fat-water separation reduced the occurrence of fat-water swaps. Utilizing the complex signal data led to more stable correction results than working with magnitude data, as was proposed for 3 T. Our approach reduced pseudo-nuclear Overhauser effects compared to the other correction methods. Thus, the mean asymmetry contrast at 3.5 ppm in cartilage over five volunteers increased from -9.2% (uncorrected) and -10.6% (Z-spectrum-based) to -1.5%. Results showed higher spatial stability than with the fat saturation pulse.Our work demonstrates the feasibility of multi-echo-based fat-water separation with an adaptive fat model for fat artifact correction for CEST MRI at 7 T. Our approach provided better fat artifact correction throughout the entire spectrum and image than the fat saturation pulse or Z-spectrum-based correction method for both phantom and knee imaging results. 000283203 536__ $$0G:(DE-HGF)POF4-315$$a315 - Bildgebung und Radioonkologie (POF4-315)$$cPOF4-315$$fPOF IV$$x0 000283203 588__ $$aDataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de 000283203 650_7 $$2Other$$a7 T 000283203 650_7 $$2Other$$aCEST 000283203 650_7 $$2Other$$afat artifact 000283203 650_7 $$2Other$$afat-water separation 000283203 650_7 $$2Other$$aknee imaging 000283203 650_7 $$2Other$$anuclear Overhauser effect 000283203 7001_ $$00000-0002-8450-3021$$aLiebert, Andrzej$$b1 000283203 7001_ $$00000-0002-4599-1122$$aGast, Lena V$$b2 000283203 7001_ $$aZeiger, Paula$$b3 000283203 7001_ $$aUder, Michael$$b4 000283203 7001_ $$aZaiss, Moritz$$b5 000283203 7001_ $$0P:(DE-He78)054fd7a5195b75b11fbdc5c360276011$$aNagel, Armin$$b6$$eLast author$$udkfz 000283203 773__ $$0PERI:(DE-600)1493786-4$$a10.1002/mrm.29863$$gp. mrm.29863$$n2$$p481-496$$tMagnetic resonance in medicine$$v91$$x1522-2594$$y2024 000283203 909CO $$ooai:inrepo02.dkfz.de:283203$$pVDB 000283203 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)054fd7a5195b75b11fbdc5c360276011$$aDeutsches Krebsforschungszentrum$$b6$$kDKFZ 000283203 9131_ $$0G:(DE-HGF)POF4-315$$1G:(DE-HGF)POF4-310$$2G:(DE-HGF)POF4-300$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vBildgebung und Radioonkologie$$x0 000283203 9141_ $$y2023 000283203 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2022-11-08$$wger 000283203 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2022-11-08 000283203 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2022-11-08 000283203 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2022-11-08 000283203 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2023-10-21$$wger 000283203 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bMAGN RESON MED : 2022$$d2023-10-21 000283203 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-10-21 000283203 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-10-21 000283203 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-10-21 000283203 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2023-10-21 000283203 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-10-21 000283203 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2023-10-21 000283203 915__ $$0StatID:(DE-HGF)1110$$2StatID$$aDBCoverage$$bCurrent Contents - Clinical Medicine$$d2023-10-21 000283203 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2023-10-21 000283203 9202_ $$0I:(DE-He78)E020-20160331$$kE020$$lE020 Med. Physik in der Radiologie$$x0 000283203 9201_ $$0I:(DE-He78)E020-20160331$$kE020$$lE020 Med. Physik in der Radiologie$$x0 000283203 980__ $$ajournal 000283203 980__ $$aVDB 000283203 980__ $$aI:(DE-He78)E020-20160331 000283203 980__ $$aUNRESTRICTED