000283203 001__ 283203
000283203 005__ 20240229155050.0
000283203 0247_ $$2doi$$a10.1002/mrm.29863
000283203 0247_ $$2pmid$$apmid:37753844
000283203 0247_ $$2ISSN$$a1522-2594
000283203 0247_ $$2ISSN$$a0740-3194
000283203 037__ $$aDKFZ-2023-01968
000283203 041__ $$aEnglish
000283203 082__ $$a610
000283203 1001_ $$00000-0002-0847-2729$$aTkotz, Katharina$$b0
000283203 245__ $$aMulti-echo-based fat artifact correction for CEST MRI at 7 T.
000283203 260__ $$aNew York, NY [u.a.]$$bWiley-Liss$$c2024
000283203 3367_ $$2DRIVER$$aarticle
000283203 3367_ $$2DataCite$$aOutput Types/Journal article
000283203 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1701341444_1991
000283203 3367_ $$2BibTeX$$aARTICLE
000283203 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000283203 3367_ $$00$$2EndNote$$aJournal Article
000283203 500__ $$a#LA:E020# / 2024 Feb;91(2):481-496
000283203 520__ $$aCEST MRI is influenced by fat signal, which can reduce the apparent CEST contrast or lead to pseudo-CEST effects. Our goal was to develop a fat artifact correction based on multi-echo fat-water separation that functions stably for 7 T knee MRI data.Our proposed algorithm utilizes the full complex data and a phase demodulation with an off-resonance map estimation based on the Z-spectra prior to fat-water separation to achieve stable fat artifact correction. Our method was validated and compared to multi-echo-based methods originally proposed for 3 T by Bloch-McConnell simulations and phantom measurements. Moreover, the method was applied to in vivo 7 T knee MRI examinations and compared to Gaussian fat saturation and a published single-echo Z-spectrum-based fat artifact correction method.Phase demodulation prior to fat-water separation reduced the occurrence of fat-water swaps. Utilizing the complex signal data led to more stable correction results than working with magnitude data, as was proposed for 3 T. Our approach reduced pseudo-nuclear Overhauser effects compared to the other correction methods. Thus, the mean asymmetry contrast at 3.5 ppm in cartilage over five volunteers increased from -9.2% (uncorrected) and -10.6% (Z-spectrum-based) to -1.5%. Results showed higher spatial stability than with the fat saturation pulse.Our work demonstrates the feasibility of multi-echo-based fat-water separation with an adaptive fat model for fat artifact correction for CEST MRI at 7 T. Our approach provided better fat artifact correction throughout the entire spectrum and image than the fat saturation pulse or Z-spectrum-based correction method for both phantom and knee imaging results.
000283203 536__ $$0G:(DE-HGF)POF4-315$$a315 - Bildgebung und Radioonkologie (POF4-315)$$cPOF4-315$$fPOF IV$$x0
000283203 588__ $$aDataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
000283203 650_7 $$2Other$$a7 T
000283203 650_7 $$2Other$$aCEST
000283203 650_7 $$2Other$$afat artifact
000283203 650_7 $$2Other$$afat-water separation
000283203 650_7 $$2Other$$aknee imaging
000283203 650_7 $$2Other$$anuclear Overhauser effect
000283203 7001_ $$00000-0002-8450-3021$$aLiebert, Andrzej$$b1
000283203 7001_ $$00000-0002-4599-1122$$aGast, Lena V$$b2
000283203 7001_ $$aZeiger, Paula$$b3
000283203 7001_ $$aUder, Michael$$b4
000283203 7001_ $$aZaiss, Moritz$$b5
000283203 7001_ $$0P:(DE-He78)054fd7a5195b75b11fbdc5c360276011$$aNagel, Armin$$b6$$eLast author$$udkfz
000283203 773__ $$0PERI:(DE-600)1493786-4$$a10.1002/mrm.29863$$gp. mrm.29863$$n2$$p481-496$$tMagnetic resonance in medicine$$v91$$x1522-2594$$y2024
000283203 909CO $$ooai:inrepo02.dkfz.de:283203$$pVDB
000283203 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)054fd7a5195b75b11fbdc5c360276011$$aDeutsches Krebsforschungszentrum$$b6$$kDKFZ
000283203 9131_ $$0G:(DE-HGF)POF4-315$$1G:(DE-HGF)POF4-310$$2G:(DE-HGF)POF4-300$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vBildgebung und Radioonkologie$$x0
000283203 9141_ $$y2023
000283203 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2022-11-08$$wger
000283203 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2022-11-08
000283203 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2022-11-08
000283203 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2022-11-08
000283203 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2023-10-21$$wger
000283203 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bMAGN RESON MED : 2022$$d2023-10-21
000283203 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-10-21
000283203 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-10-21
000283203 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-10-21
000283203 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2023-10-21
000283203 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-10-21
000283203 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2023-10-21
000283203 915__ $$0StatID:(DE-HGF)1110$$2StatID$$aDBCoverage$$bCurrent Contents - Clinical Medicine$$d2023-10-21
000283203 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2023-10-21
000283203 9202_ $$0I:(DE-He78)E020-20160331$$kE020$$lE020 Med. Physik in der Radiologie$$x0
000283203 9201_ $$0I:(DE-He78)E020-20160331$$kE020$$lE020 Med. Physik in der Radiologie$$x0
000283203 980__ $$ajournal
000283203 980__ $$aVDB
000283203 980__ $$aI:(DE-He78)E020-20160331
000283203 980__ $$aUNRESTRICTED