% IMPORTANT: The following is UTF-8 encoded.  This means that in the presence
% of non-ASCII characters, it will not work with BibTeX 0.99 or older.
% Instead, you should use an up-to-date BibTeX implementation like “bibtex8” or
% “biber”.

@ARTICLE{Thomas:284405,
      author       = {M. Thomas and Y.-R. Su and E. A. Rosenthal and L. C. Sakoda
                      and S. L. Schmit and M. N. Timofeeva and Z. Chen and C.
                      Fernandez-Rozadilla and P. J. Law and N. Murphy and R.
                      Carreras-Torres and V. Diez-Obrero and F. J. B. van
                      Duijnhoven and S. Jiang and A. Shin and A. Wolk and A. I.
                      Phipps and A. Burnett-Hartman and A. Gsur and A. T. Chan and
                      A. G. Zauber and A. H. Wu and A. Lindblom and C. Y. Um and
                      C. M. Tangen and C. Gignoux and C. Newton and C. A. Haiman
                      and C. Qu and D. T. Bishop and D. D. Buchanan and D. R.
                      Crosslin and D. V. Conti and D.-H. Kim and E. Hauser and E.
                      White and E. Siegel and F. R. Schumacher and G. Rennert and
                      G. G. Giles and H. Hampel and H. Brenner$^*$ and I. Oze and
                      J. H. Oh and J. K. Lee and J. L. Schneider and J.
                      Chang-Claude$^*$ and J. Kim and J. R. Huyghe and J. Zheng
                      and J. Hampe and J. Greenson and J. L. Hopper and J. R.
                      Palmer and K. Visvanathan and K. Matsuo and K. Matsuda and
                      K. J. Jung and L. Li and L. Le Marchand and L. Vodickova and
                      L. Bujanda and M. J. Gunter and M. Matejcic and M. A.
                      Jenkins and M. L. Slattery and M. D'Amato and M. Wang and M.
                      Hoffmeister$^*$ and M. O. Woods and M. Kim and M. Song and
                      M. Iwasaki and M. Du and N. Udaltsova and N. Sawada and P.
                      Vodicka and P. T. Campbell and P. A. Newcomb and Q. Cai and
                      R. Pearlman and R. K. Pai and R. E. Schoen and R. S.
                      Steinfelder and R. W. Haile and R. Vandenputtelaar and R. L.
                      Prentice and S. Küry and S. Castellví-Bel and S. Tsugane
                      and S. I. Berndt and S. C. Lee and S. Brezina and S. J.
                      Weinstein and S. J. Chanock and S. H. Jee and S.-S. Kweon
                      and S. Vadaparampil and T. A. Harrison and T. Yamaji and T.
                      O. Keku and V. Vymetalkova and V. Arndt$^*$ and W.-H. Jia
                      and X.-O. Shu and Y. Lin and Y.-O. Ahn and Z. K. Stadler and
                      B. Van Guelpen and C. M. Ulrich and E. A. Platz and J. D.
                      Potter and C. I. Li and R. Meester and V. Moreno and J. C.
                      Figueiredo and G. Casey and I. Lansdorp Vogelaar and M. G.
                      Dunlop and S. B. Gruber and R. B. Hayes and P. D. P. Pharoah
                      and R. S. Houlston and G. P. Jarvik and I. P. Tomlinson and
                      W. Zheng and D. A. Corley and U. Peters and L. Hsu},
      title        = {{C}ombining {A}sian and {E}uropean genome-wide association
                      studies of colorectal cancer improves risk prediction across
                      racial and ethnic populations.},
      journal      = {Nature Communications},
      volume       = {14},
      number       = {1},
      issn         = {2041-1723},
      address      = {[London]},
      publisher    = {Nature Publishing Group UK},
      reportid     = {DKFZ-2023-01994},
      pages        = {6147},
      year         = {2023},
      abstract     = {Polygenic risk scores (PRS) have great potential to guide
                      precision colorectal cancer (CRC) prevention by identifying
                      those at higher risk to undertake targeted screening.
                      However, current PRS using European ancestry data have
                      sub-optimal performance in non-European ancestry
                      populations, limiting their utility among these populations.
                      Towards addressing this deficiency, we expand PRS
                      development for CRC by incorporating Asian ancestry data
                      (21,731 cases; 47,444 controls) into European ancestry
                      training datasets (78,473 cases; 107,143 controls). The AUC
                      estimates $(95\%$ CI) of PRS are 0.63(0.62-0.64),
                      0.59(0.57-0.61), 0.62(0.60-0.63), and 0.65(0.63-0.66) in
                      independent datasets including 1681-3651 cases and
                      8696-115,105 controls of Asian, Black/African American,
                      Latinx/Hispanic, and non-Hispanic White, respectively. They
                      are significantly better than the European-centric PRS in
                      all four major US racial and ethnic groups (p-values <
                      0.05). Further inclusion of non-European ancestry
                      populations, especially Black/African American and
                      Latinx/Hispanic, is needed to improve the risk prediction
                      and enhance equity in applying PRS in clinical practice.},
      cin          = {C070 / C120 / C020},
      ddc          = {500},
      cid          = {I:(DE-He78)C070-20160331 / I:(DE-He78)C120-20160331 /
                      I:(DE-He78)C020-20160331},
      pnm          = {313 - Krebsrisikofaktoren und Prävention (POF4-313)},
      pid          = {G:(DE-HGF)POF4-313},
      typ          = {PUB:(DE-HGF)16},
      pubmed       = {pmid:37783704},
      doi          = {10.1038/s41467-023-41819-0},
      url          = {https://inrepo02.dkfz.de/record/284405},
}