000284436 001__ 284436
000284436 005__ 20240229155053.0
000284436 0247_ $$2doi$$a10.1016/j.phro.2023.100497
000284436 037__ $$aDKFZ-2023-02020
000284436 041__ $$aEnglish
000284436 082__ $$a610
000284436 1001_ $$0P:(DE-He78)543fd68c91aa0cfef6fcfd85fbe9a263$$aFahad, Hafiz Muhammad$$b0$$eFirst author$$udkfz
000284436 245__ $$aMulti-parametric optimization of magnetic resonance imaging sequences for magnetic resonance-guided radiotherapy
000284436 260__ $$aAmsterdam [u. a.]$$bElsevier Science$$c2023
000284436 3367_ $$2DRIVER$$aarticle
000284436 3367_ $$2DataCite$$aOutput Types/Journal article
000284436 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1698065750_11319
000284436 3367_ $$2BibTeX$$aARTICLE
000284436 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000284436 3367_ $$00$$2EndNote$$aJournal Article
000284436 500__ $$a #EA:E040#LA:E040#
000284436 520__ $$aBackground and Purpose.Magnetic Resonance Imaging (MRI) is widely used in oncology for tumor staging, treatment response assessment, and radiation therapy (RT) planning. This study proposes a framework for automatic optimization of MRI sequences based on pulse sequence parameter sets (SPS) that are directly applied on the scanner, for application in RT planning.Materials and Methods.A phantom with 7 in-house fabricated contrasts was used for measurements. The proposed framework employed a derivative-free optimization algorithm to repeatedly update and execute a parametrized sequence on the MR scanner to acquire new data. In each iteration, the mean-square error was calculated based on the clinical application. Two clinically relevant optimization goals were pursued: achieving the same signal and therefore contrast as in a target image, and maximizing the signal difference (contrast) between specified tissue types. The framework was evaluated using two optimization methods: a covariance matrix adaptation evolution strategy (CMA-ES) and a genetic algorithm (GA).Results.The obtained results demonstrated the potential of the proposed framework for automatic optimization of MRI sequences. Both CMA-ES and GA methods showed promising results in achieving the two optimization goals, however, CMA-ES converged much faster as compared to GA.Conclusions.The proposed framework enables for automatic optimization of MRI sequences based on SPS that are directly applied on the scanner and it may be used to enhance the quality of MRI images for dedicated applications in MR-guided RT.
000284436 536__ $$0G:(DE-HGF)POF4-315$$a315 - Bildgebung und Radioonkologie (POF4-315)$$cPOF4-315$$fPOF IV$$x0
000284436 588__ $$aDataset connected to CrossRef, Journals: inrepo02.dkfz.de
000284436 7001_ $$0P:(DE-He78)e43f53a20835bd25906f1795558151a3$$aDorsch, Stefan$$b1
000284436 7001_ $$0P:(DE-HGF)0$$aZaiss, Moritz$$b2
000284436 7001_ $$0P:(DE-He78)b43076fb0a30230e4323887c0c980046$$aKarger, Christian$$b3$$eLast author$$udkfz
000284436 773__ $$0PERI:(DE-600)2963795-8$$a10.1016/j.phro.2023.100497$$gp. 100497 -$$p100497$$tPhysics & Imaging in Radiation Oncology$$v28$$x2405-6316$$y2023
000284436 909CO $$ooai:inrepo02.dkfz.de:284436$$pVDB
000284436 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)543fd68c91aa0cfef6fcfd85fbe9a263$$aDeutsches Krebsforschungszentrum$$b0$$kDKFZ
000284436 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)e43f53a20835bd25906f1795558151a3$$aDeutsches Krebsforschungszentrum$$b1$$kDKFZ
000284436 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)b43076fb0a30230e4323887c0c980046$$aDeutsches Krebsforschungszentrum$$b3$$kDKFZ
000284436 9131_ $$0G:(DE-HGF)POF4-315$$1G:(DE-HGF)POF4-310$$2G:(DE-HGF)POF4-300$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vBildgebung und Radioonkologie$$x0
000284436 9141_ $$y2023
000284436 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPHYS IMAG RADIAT ONC : 2022$$d2023-08-25
000284436 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-08-25
000284436 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-08-25
000284436 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central$$d2023-08-25
000284436 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2023-05-02T08:51:39Z
000284436 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2023-05-02T08:51:39Z
000284436 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Anonymous peer review$$d2023-05-02T08:51:39Z
000284436 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-08-25
000284436 915__ $$0StatID:(DE-HGF)0112$$2StatID$$aWoS$$bEmerging Sources Citation Index$$d2023-08-25
000284436 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-08-25
000284436 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2023-08-25
000284436 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2023-08-25
000284436 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2023-08-25
000284436 9202_ $$0I:(DE-He78)E040-20160331$$kE040$$lE040 Med. Physik in der Strahlentherapie$$x0
000284436 9201_ $$0I:(DE-He78)E040-20160331$$kE040$$lE040 Med. Physik in der Strahlentherapie$$x0
000284436 9200_ $$0I:(DE-He78)E040-20160331$$kE040$$lE040 Med. Physik in der Strahlentherapie$$x0
000284436 980__ $$ajournal
000284436 980__ $$aVDB
000284436 980__ $$aI:(DE-He78)E040-20160331
000284436 980__ $$aUNRESTRICTED