000284633 001__ 284633
000284633 005__ 20240229155054.0
000284633 0247_ $$2pmid$$apmid:37815197
000284633 0247_ $$2doi$$a10.1002/acm2.14174
000284633 0247_ $$2altmetric$$aaltmetric:157303672
000284633 037__ $$aDKFZ-2023-02040
000284633 041__ $$aEnglish
000284633 082__ $$a530
000284633 1001_ $$00000-0002-6526-2453$$aQubala, Abdallah$$b0
000284633 245__ $$aComparative evaluation of a surface-based respiratory monitoring system against a pressure sensor for 4DCT image reconstruction in phantoms.
000284633 260__ $$aReston, Va.$$bACMP$$c2024
000284633 3367_ $$2DRIVER$$aarticle
000284633 3367_ $$2DataCite$$aOutput Types/Journal article
000284633 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1707894971_12659
000284633 3367_ $$2BibTeX$$aARTICLE
000284633 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000284633 3367_ $$00$$2EndNote$$aJournal Article
000284633 500__ $$a#LA:E040# / 2024 Feb;25(2):e14174
000284633 520__ $$aFour-dimensional computed tomography (4DCT), which relies on breathing-induced motion, requires realistic surrogate information of breathing variations to reconstruct the tumor trajectory and motion variability of normal tissues accurately. Therefore, the SimRT surface-guided respiratory monitoring system has been installed on a Siemens CT scanner. This work evaluated the temporal and spatial accuracy of SimRT versus our commonly used pressure sensor, AZ-733 V. A dynamic thorax phantom was used to reproduce regular and irregular breathing patterns acquired by SimRT and Anzai. Various parameters of the recorded breathing patterns, including mean absolute deviations (MAD), Pearson correlations (PC), and tagging precision, were investigated and compared to ground-truth. Furthermore, 4DCT reconstructions were analyzed to assess the volume discrepancy, shape deformation and tumor trajectory. Compared to the ground-truth, SimRT more precisely reproduced the breathing patterns with a MAD range of 0.37 ± 0.27 and 0.92 ± 1.02 mm versus Anzai with 1.75 ± 1.54 and 5.85 ± 3.61 mm for regular and irregular breathing patterns, respectively. Additionally, SimRT provided a more robust PC of 0.994 ± 0.009 and 0.936 ± 0.062 for all investigated breathing patterns. Further, the peak and valley recognition were found to be more accurate and stable using SimRT. The comparison of tumor trajectories revealed discrepancies up to 7.2 and 2.3 mm for Anzai and SimRT, respectively. Moreover, volume discrepancies up to 1.71 ± 1.62% and 1.24 ± 2.02% were found for both Anzai and SimRT, respectively. SimRT was validated across various breathing patterns and showed a more precise and stable breathing tracking, (i) independent of the amplitude and period, (ii) and without placing any physical devices on the patient's body. These findings resulted in a more accurate temporal and spatial accuracy, thus leading to a more realistic 4DCT reconstruction and breathing-adapted treatment planning.
000284633 536__ $$0G:(DE-HGF)POF4-315$$a315 - Bildgebung und Radioonkologie (POF4-315)$$cPOF4-315$$fPOF IV$$x0
000284633 588__ $$aDataset connected to DataCite, PubMed, , Journals: inrepo02.dkfz.de
000284633 650_7 $$2Other$$a4DCT reconstruction
000284633 650_7 $$2Other$$aSurface-guided radiotherapy
000284633 650_7 $$2Other$$abreathing detection
000284633 650_7 $$2Other$$abreathing surrogate
000284633 650_7 $$2Other$$acommissioning
000284633 650_7 $$2Other$$amobile tumors
000284633 650_7 $$2Other$$amotion artifacts
000284633 650_7 $$2Other$$arespiratory monitoring system
000284633 7001_ $$aShafee, Jehad$$b1
000284633 7001_ $$00000-0003-2733-4134$$aBatista, Vania$$b2
000284633 7001_ $$aLiermann, Jakob$$b3
000284633 7001_ $$aWinter, Marcus$$b4
000284633 7001_ $$aPiro, Daniel$$b5
000284633 7001_ $$0P:(DE-He78)440a3f62ea9ea5c63375308976fc4c44$$aJäkel, Oliver$$b6$$eLast author$$udkfz
000284633 773__ $$0PERI:(DE-600)2010347-5$$a10.1002/acm2.14174$$n2$$pe14174$$tJournal of applied clinical medical physics$$v25$$x1526-9914$$y2024
000284633 909CO $$ooai:inrepo02.dkfz.de:284633$$pVDB
000284633 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)440a3f62ea9ea5c63375308976fc4c44$$aDeutsches Krebsforschungszentrum$$b6$$kDKFZ
000284633 9131_ $$0G:(DE-HGF)POF4-315$$1G:(DE-HGF)POF4-310$$2G:(DE-HGF)POF4-300$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vBildgebung und Radioonkologie$$x0
000284633 9141_ $$y2023
000284633 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2023-01-03T20:18:43Z
000284633 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2023-01-03T20:18:43Z
000284633 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Double anonymous peer review$$d2023-01-03T20:18:43Z
000284633 915__ $$0LIC:(DE-HGF)CCBYNV$$2V:(DE-HGF)$$aCreative Commons Attribution CC BY (No Version)$$bDOAJ$$d2023-01-03T20:18:43Z
000284633 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-08-31
000284633 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-08-31
000284633 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2023-08-31
000284633 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2023-08-31
000284633 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ APPL CLIN MED PHYS : 2022$$d2023-10-22
000284633 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-10-22
000284633 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-10-22
000284633 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central$$d2023-10-22
000284633 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-10-22
000284633 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-10-22
000284633 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2023-10-22
000284633 9202_ $$0I:(DE-He78)E040-20160331$$kE040$$lE040 Med. Physik in der Strahlentherapie$$x0
000284633 9201_ $$0I:(DE-He78)E040-20160331$$kE040$$lE040 Med. Physik in der Strahlentherapie$$x0
000284633 980__ $$ajournal
000284633 980__ $$aVDB
000284633 980__ $$aI:(DE-He78)E040-20160331
000284633 980__ $$aUNRESTRICTED