001     284831
005     20240303005600.0
024 7 _ |a 10.1242/bio.060151
|2 doi
024 7 _ |a pmid:37855382
|2 pmid
024 7 _ |a altmetric:156946960
|2 altmetric
037 _ _ |a DKFZ-2023-02127
041 _ _ |a English
082 _ _ |a 570
100 1 _ |a Di Marco, Barbara
|0 P:(DE-He78)3f238cb47096916308d99eabbce682e9
|b 0
|e First author
|u dkfz
245 _ _ |a Spatial transcriptomics map of the embryonic mouse brain - a tool to explore neurogenesis.
260 _ _ |a Cambridge
|c 2023
|b Company
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1697807411_29650
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a #EA:A231#LA:A231#
520 _ _ |a The developing brain has a well-organized anatomical structure comprising different types of neural and non-neural cells. Stem cells, progenitors and newborn neurons tightly interact with their neighbouring cells and tissue microenvironment, and this intricate interplay ultimately shapes the output of neurogenesis. Given the relevance of spatial cues during brain development, we acknowledge the necessity for a spatial transcriptomics map accessible to the neurodevelopmental community. To fulfil this need, we generated spatially resolved RNA sequencing (RNAseq) data from embryonic day 13.5 mouse brain sections immunostained for mitotic active neural and vascular cells. Unsupervised clustering defined specific cell type populations of diverse lineages and differentiation states. Differential expression analysis revealed unique transcriptional signatures across specific brain areas, uncovering novel features inherent to particular anatomical domains. Finally, we integrated existing single-cell RNAseq datasets into our spatial transcriptomics map, adding tissue context to single-cell RNAseq data. In summary, we provide a valuable tool that enables the exploration and discovery of unforeseen molecular players involved in neurogenesis, particularly in the crosstalk between different cell types.
536 _ _ |a 311 - Zellbiologie und Tumorbiologie (POF4-311)
|0 G:(DE-HGF)POF4-311
|c POF4-311
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
650 _ 7 |a Gene expression atlas
|2 Other
650 _ 7 |a Mouse telencephalon
|2 Other
650 _ 7 |a Neurodevelopment
|2 Other
650 _ 7 |a Single-cell and spatial transcriptomics data integration
|2 Other
700 1 _ |a Vázquez-Marín, Javier
|b 1
700 1 _ |a Monyer, Hannah
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Centanin, Lázaro
|0 0000-0003-3889-4524
|b 3
700 1 _ |a Alfonso, Julieta
|0 P:(DE-He78)3f128e570b3a9009d7b52a0523af43dd
|b 4
|e Last author
|u dkfz
773 _ _ |a 10.1242/bio.060151
|g Vol. 12, no. 10, p. bio060151
|0 PERI:(DE-600)2632264-X
|n 10
|p bio060151
|t Biology open
|v 12
|y 2023
|x 2046-6390
909 C O |o oai:inrepo02.dkfz.de:284831
|p VDB
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 0
|6 P:(DE-He78)3f238cb47096916308d99eabbce682e9
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 2
|6 P:(DE-HGF)0
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 4
|6 P:(DE-He78)3f128e570b3a9009d7b52a0523af43dd
913 1 _ |a DE-HGF
|b Gesundheit
|l Krebsforschung
|1 G:(DE-HGF)POF4-310
|0 G:(DE-HGF)POF4-311
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Zellbiologie und Tumorbiologie
|x 0
914 1 _ |y 2023
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b BIOL OPEN : 2022
|d 2023-08-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-08-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-08-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0320
|2 StatID
|b PubMed Central
|d 2023-08-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2021-10-20T13:41:03Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2021-10-20T13:41:03Z
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Anonymous peer review
|d 2021-10-20T13:41:03Z
915 _ _ |a Creative Commons Attribution CC BY (No Version)
|0 LIC:(DE-HGF)CCBYNV
|2 V:(DE-HGF)
|b DOAJ
|d 2021-10-20T13:41:03Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-08-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2023-08-22
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2023-08-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-08-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2023-08-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2023-08-22
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2023-08-22
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2023-08-22
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2023-08-22
920 2 _ |0 I:(DE-He78)A231-20160331
|k A231
|l A231 AG Alfonso
|x 0
920 1 _ |0 I:(DE-He78)A231-20160331
|k A231
|l A231 AG Alfonso
|x 0
920 0 _ |0 I:(DE-He78)A231-20160331
|k A231
|l A231 AG Alfonso
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)A231-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21