001     285002
005     20240229155059.0
024 7 _ |a 10.1186/s13148-023-01580-z
|2 doi
024 7 _ |a pmid:37885041
|2 pmid
024 7 _ |a 1868-7075
|2 ISSN
024 7 _ |a 1868-7083
|2 ISSN
024 7 _ |a altmetric:155828285
|2 altmetric
037 _ _ |a DKFZ-2023-02175
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a Schmutz, Maximilian
|0 P:(DE-He78)0a8e51582529e502d5e1aa688679ded5
|b 0
|e First author
245 _ _ |a Predictive value of DNA methylation patterns in AML patients treated with an azacytidine containing induction regimen.
260 _ _ |a [Erscheinungsort nicht ermittelbar]
|c 2023
|b BioMed Central
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1698412438_6647
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a #EA:B370#LA:B370#
520 _ _ |a Acute myeloid leukemia (AML) is a heterogeneous disease with a poor prognosis. Dysregulation of the epigenetic machinery is a significant contributor to disease development. Some AML patients benefit from treatment with hypomethylating agents (HMAs), but no predictive biomarkers for therapy response exist. Here, we investigated whether unbiased genome-wide assessment of pre-treatment DNA-methylation profiles in AML bone marrow blasts can help to identify patients who will achieve a remission after an azacytidine-containing induction regimen.A total of n = 155 patients with newly diagnosed AML treated in the AMLSG 12-09 trial were randomly assigned to a screening and a refinement and validation cohort. The cohorts were divided according to azacytidine-containing induction regimens and response status. Methylation status was assessed for 664,227 500-bp-regions using methyl-CpG immunoprecipitation-seq, resulting in 1755 differentially methylated regions (DMRs). Top regions were distilled and included genes such as WNT10A and GATA3. 80% of regions identified as a hit were represented on HumanMethlyation 450k Bead Chips. Quantitative methylation analysis confirmed 90% of these regions (36 of 40 DMRs). A classifier was trained using penalized logistic regression and fivefold cross validation containing 17 CpGs. Validation based on mass spectra generated by MALDI-TOF failed (AUC 0.59). However, discriminative ability was maintained by adding neighboring CpGs. A recomposed classifier with 12 CpGs resulted in an AUC of 0.77. When evaluated in the non-azacytidine containing group, the AUC was 0.76.Our analysis evaluated the value of a whole genome methyl-CpG screening assay for the identification of informative methylation changes. We also compared the informative content and discriminatory power of regions and single CpGs for predicting response to therapy. The relevance of the identified DMRs is supported by their association with key regulatory processes of oncogenic transformation and support the idea of relevant DMRs being enriched at distinct loci rather than evenly distribution across the genome. Predictive response to therapy could be established but lacked specificity for treatment with azacytidine. Our results suggest that a predictive epigenotype carries its methylation information at a complex, genome-wide level, that is confined to regions, rather than to single CpGs. With increasing application of combinatorial regimens, response prediction may become even more complicated.
536 _ _ |a 312 - Funktionelle und strukturelle Genomforschung (POF4-312)
|0 G:(DE-HGF)POF4-312
|c POF4-312
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
650 _ 7 |a AML
|2 Other
650 _ 7 |a Azacytidine
|2 Other
650 _ 7 |a DNA methylation patterns
|2 Other
650 _ 7 |a DNA-methylation
|2 Other
650 _ 7 |a Epigenetics
|2 Other
650 _ 7 |a HMA-treatment
|2 Other
650 _ 7 |a Predictive biomarker
|2 Other
650 _ 7 |a Predictive signature
|2 Other
700 1 _ |a Zucknick, Manuela
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Schlenk, Richard F
|b 2
700 1 _ |a Mertens, Daniel
|0 P:(DE-He78)833c06a995d272b78f3a20df3eba6e9e
|b 3
|u dkfz
700 1 _ |a Benner, Axel
|0 P:(DE-He78)e15dfa1260625c69d6690a197392a994
|b 4
|u dkfz
700 1 _ |a Weichenhan, Dieter
|0 P:(DE-He78)ff4024f7bc236e7897d9c18ee19c451f
|b 5
|u dkfz
700 1 _ |a Mücke, Oliver
|0 P:(DE-He78)aaef108f2a1ba0a78fff60ac60d3368c
|b 6
|u dkfz
700 1 _ |a Döhner, Konstanze
|b 7
700 1 _ |a Plass, Christoph
|0 P:(DE-He78)4301875630bc997edf491c694ae1f8a9
|b 8
|u dkfz
700 1 _ |a Bullinger, Lars
|0 P:(DE-HGF)0
|b 9
700 1 _ |a Claus, Rainer
|0 P:(DE-HGF)0
|b 10
|e Last author
773 _ _ |a 10.1186/s13148-023-01580-z
|g Vol. 15, no. 1, p. 171
|0 PERI:(DE-600)2553921-8
|n 1
|p 171
|t Clinical epigenetics
|v 15
|y 2023
|x 1868-7075
909 C O |o oai:inrepo02.dkfz.de:285002
|p VDB
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 0
|6 P:(DE-He78)0a8e51582529e502d5e1aa688679ded5
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 1
|6 P:(DE-HGF)0
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 3
|6 P:(DE-He78)833c06a995d272b78f3a20df3eba6e9e
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 4
|6 P:(DE-He78)e15dfa1260625c69d6690a197392a994
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 5
|6 P:(DE-He78)ff4024f7bc236e7897d9c18ee19c451f
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 6
|6 P:(DE-He78)aaef108f2a1ba0a78fff60ac60d3368c
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 8
|6 P:(DE-He78)4301875630bc997edf491c694ae1f8a9
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 9
|6 P:(DE-HGF)0
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 10
|6 P:(DE-HGF)0
913 1 _ |a DE-HGF
|b Gesundheit
|l Krebsforschung
|1 G:(DE-HGF)POF4-310
|0 G:(DE-HGF)POF4-312
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Funktionelle und strukturelle Genomforschung
|x 0
914 1 _ |y 2023
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-08-19
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-08-19
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0320
|2 StatID
|b PubMed Central
|d 2023-08-19
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2023-04-12T15:09:22Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2023-04-12T15:09:22Z
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Anonymous peer review
|d 2023-04-12T15:09:22Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-08-19
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2023-08-19
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-08-19
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2023-08-19
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b CLIN EPIGENETICS : 2022
|d 2023-08-19
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2023-08-19
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2023-08-19
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b CLIN EPIGENETICS : 2022
|d 2023-08-19
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2023-08-19
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2023-08-19
920 2 _ |0 I:(DE-He78)B370-20160331
|k B370
|l Epigenomik
|x 0
920 1 _ |0 I:(DE-He78)B370-20160331
|k B370
|l Epigenomik
|x 0
920 1 _ |0 I:(DE-He78)W010-20160331
|k W010
|l Klinische Studienzentrale
|x 1
920 1 _ |0 I:(DE-He78)B061-20160331
|k B061
|l B061 Mechanismen d. Leukämogenese
|x 2
920 1 _ |0 I:(DE-He78)C060-20160331
|k C060
|l C060 Biostatistik
|x 3
920 1 _ |0 I:(DE-He78)BE01-20160331
|k BE01
|l DKTK Koordinierungsstelle Berlin
|x 4
920 0 _ |0 I:(DE-He78)B370-20160331
|k B370
|l Epigenomik
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)B370-20160331
980 _ _ |a I:(DE-He78)W010-20160331
980 _ _ |a I:(DE-He78)B061-20160331
980 _ _ |a I:(DE-He78)C060-20160331
980 _ _ |a I:(DE-He78)BE01-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21