000285284 001__ 285284
000285284 005__ 20240229155106.0
000285284 0247_ $$2doi$$a10.1016/j.mri.2023.11.006
000285284 0247_ $$2pmid$$apmid:37939973
000285284 0247_ $$2ISSN$$a0730-725X
000285284 0247_ $$2ISSN$$a1873-5894
000285284 037__ $$aDKFZ-2023-02309
000285284 041__ $$aEnglish
000285284 082__ $$a610
000285284 1001_ $$0P:(DE-He78)b64aa39b45dc01812c04369caa442684$$aRauch, Julian$$b0$$eFirst author$$udkfz
000285284 245__ $$aCompensation of concomitant field effects in double diffusion encoding by means of added oscillating gradients.
000285284 260__ $$aAmsterdam [u.a.]$$bElsevier Science$$c2024
000285284 3367_ $$2DRIVER$$aarticle
000285284 3367_ $$2DataCite$$aOutput Types/Journal article
000285284 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1702389641_9553
000285284 3367_ $$2BibTeX$$aARTICLE
000285284 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000285284 3367_ $$00$$2EndNote$$aJournal Article
000285284 500__ $$a#EA:E020#LA:E020# / 2024 Jan;105:133-141
000285284 520__ $$aMaxwell or concomitant fields imprint additional phases on the transverse magnetization. This concomitant phase may cause severe image artifacts like signal voids or distort the quantitative parameters due to the induced intravoxel dephasing. In particular, double diffusion encoding (DDE) schemes with two pairs of bipolar diffusion weighting gradients separated by a refocusing radiofrequency (RF) pulse are prone to concomitant field-induced artifacts. In this work, a method for reducing concomitant field effects in these DDE sequences based on additional oscillating gradients is presented. These oscillating gradient pulses obtained by constrained optimization were added to the original gradient waveforms. The modified sequences reduced the accumulated concomitant phase without significant changes in the original sequence characteristics. The proposed method was applied to a DDE acquisition scheme consisting of 60 pairs of diffusion wave vectors. For phantom as well as for in vivo experiments, a considerable increase in the signal-to-noise ratio (SNR) was obtained. For phantom measurements with a diffusion weighting of b = 2000 s/mm2 for each of the gradient pairs, an SNR increase of up to 40% was observed for a transversal slice that had a distance of 5 cm from the isocenter. For equivalent slice parameters, in vivo measurements in the brain of a healthy volunteer exhibited an increase in SNR of up to 35% for b = 750 s/mm2 for each weighting. These findings are supported by corresponding simulations, which also predict a positive effect on the SNR. In summary, the presented method leads to an SNR gain without additional RF refocusing pulses.
000285284 536__ $$0G:(DE-HGF)POF4-315$$a315 - Bildgebung und Radioonkologie (POF4-315)$$cPOF4-315$$fPOF IV$$x0
000285284 588__ $$aDataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
000285284 650_7 $$2Other$$aConcomitant fields
000285284 650_7 $$2Other$$aDiffusion weighting
000285284 650_7 $$2Other$$aDouble diffusion encoding
000285284 650_7 $$2Other$$aOptimization
000285284 650_7 $$2Other$$aOscillating gradients
000285284 650_7 $$2Other$$aSequence design
000285284 7001_ $$aLaun, Frederik B$$b1
000285284 7001_ $$0P:(DE-He78)29b2f01310f7022916255ddba2750f9b$$aBachert, Peter$$b2$$udkfz
000285284 7001_ $$0P:(DE-He78)022611a2317e4de40fd912e0a72293a8$$aLadd, Mark E$$b3$$udkfz
000285284 7001_ $$0P:(DE-He78)59dfdd0ee0a7f0db81535f0781a3a6d6$$aKuder, Tristan Anselm$$b4$$eLast author$$udkfz
000285284 773__ $$0PERI:(DE-600)1500646-3$$a10.1016/j.mri.2023.11.006$$gp. S0730725X23001923$$p133-141$$tMagnetic resonance imaging$$v105$$x0730-725X$$y2024
000285284 909CO $$ooai:inrepo02.dkfz.de:285284$$pVDB
000285284 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)b64aa39b45dc01812c04369caa442684$$aDeutsches Krebsforschungszentrum$$b0$$kDKFZ
000285284 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)29b2f01310f7022916255ddba2750f9b$$aDeutsches Krebsforschungszentrum$$b2$$kDKFZ
000285284 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)022611a2317e4de40fd912e0a72293a8$$aDeutsches Krebsforschungszentrum$$b3$$kDKFZ
000285284 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)59dfdd0ee0a7f0db81535f0781a3a6d6$$aDeutsches Krebsforschungszentrum$$b4$$kDKFZ
000285284 9131_ $$0G:(DE-HGF)POF4-315$$1G:(DE-HGF)POF4-310$$2G:(DE-HGF)POF4-300$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vBildgebung und Radioonkologie$$x0
000285284 9141_ $$y2023
000285284 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2023-08-28$$wger
000285284 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bMAGN RESON IMAGING : 2022$$d2023-08-28
000285284 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-08-28
000285284 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-08-28
000285284 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2023-08-28
000285284 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2023-08-28
000285284 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-08-28
000285284 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-08-28
000285284 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-08-28
000285284 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-08-28
000285284 915__ $$0StatID:(DE-HGF)1110$$2StatID$$aDBCoverage$$bCurrent Contents - Clinical Medicine$$d2023-08-28
000285284 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2023-08-28
000285284 9202_ $$0I:(DE-He78)E020-20160331$$kE020$$lE020 Med. Physik in der Radiologie$$x0
000285284 9201_ $$0I:(DE-He78)E020-20160331$$kE020$$lE020 Med. Physik in der Radiologie$$x0
000285284 9200_ $$0I:(DE-He78)E020-20160331$$kE020$$lE020 Med. Physik in der Radiologie$$x0
000285284 980__ $$ajournal
000285284 980__ $$aVDB
000285284 980__ $$aI:(DE-He78)E020-20160331
000285284 980__ $$aUNRESTRICTED