Home > Publications database > Cancer-related fatigue: Towards a more targeted approach based on classification by biomarkers and psychological factors. > print |
001 | 285365 | ||
005 | 20240229155108.0 | ||
024 | 7 | _ | |a 10.1002/ijc.34791 |2 doi |
024 | 7 | _ | |a pmid:37950650 |2 pmid |
024 | 7 | _ | |a 0020-7136 |2 ISSN |
024 | 7 | _ | |a 1097-0215 |2 ISSN |
024 | 7 | _ | |a altmetric:156753438 |2 altmetric |
037 | _ | _ | |a DKFZ-2023-02334 |
041 | _ | _ | |a English |
082 | _ | _ | |a 610 |
100 | 1 | _ | |a Schmidt, Martina |0 P:(DE-He78)2def8f8594c8f797f5ed4398258c6cac |b 0 |e First author |u dkfz |
245 | _ | _ | |a Cancer-related fatigue: Towards a more targeted approach based on classification by biomarkers and psychological factors. |
260 | _ | _ | |a Bognor Regis |c 2024 |b Wiley-Liss |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1706019034_7567 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
500 | _ | _ | |a #EA:C110#LA:C110# / 2024 Mar 15;154(6):1011-1018 |
520 | _ | _ | |a Cancer-related fatigue is a frequent, burdensome and often insufficiently treated symptom. A more targeted treatment of fatigue is urgently needed. Therefore, we examined biomarkers and clinical factors to identify fatigue subtypes with potentially different pathophysiologies. The study population comprised disease-free breast cancer survivors of a German population-based case-control study who were re-assessed on average 6 (FU1, n = 1871) and 11 years (FU2, n = 1295) after diagnosis. At FU1 and FU2, we assessed fatigue with the 20-item multidimensional Fatigue Assessment Questionnaire and further factors by structured telephone-interviews. Serum samples collected at FU1 were analyzed for IL-1ß, IL-2, IL-4, IL-6, IL-10, TNF-a, GM-CSF, IL-5, VEGF-A, SAA, CRP, VCAM-1, ICAM-1, leptin, adiponectin and resistin. Exploratory cluster analyses among survivors with fatigue at FU1 and no history of depression yielded three clusters (CL1, CL2 and CL3). CL1 (n = 195) on average had high levels of TNF-α, IL1-β, IL-6, resistin, VEGF-A and GM-CSF, and showed high BMI and pain levels. Fatigue in CL1 manifested rather in physical dimensions. Contrarily, CL2 (n = 78) was characterized by high leptin level and had highest cognitive fatigue. CL3 (n = 318) did not show any prominent characteristics. Fatigued survivors with a history of depression (n = 214) had significantly higher physical, emotional and cognitive fatigue and showed significantly less amelioration of fatigue from FU1 to FU2 than survivors without depression. In conclusion, from the broad phenotype 'cancer-related fatigue' we were able to delineate subgroups characterized by biomarkers or history of depression. Future investigations may take these subtypes into account, ultimately enabling a better targeted therapy of fatigue. |
536 | _ | _ | |a 313 - Krebsrisikofaktoren und Prävention (POF4-313) |0 G:(DE-HGF)POF4-313 |c POF4-313 |f POF IV |x 0 |
588 | _ | _ | |a Dataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de |
650 | _ | 7 | |a breast cancer |2 Other |
650 | _ | 7 | |a cancer survivorship care |2 Other |
650 | _ | 7 | |a fatigue |2 Other |
650 | _ | 7 | |a inflammation |2 Other |
650 | _ | 7 | |a patient-reported outcomes |2 Other |
700 | 1 | _ | |a Maurer, Tabea |b 1 |
700 | 1 | _ | |a Behrens, Sabine |0 P:(DE-He78)6b04712f3afe72044d496a25505cb1ea |b 2 |u dkfz |
700 | 1 | _ | |a Seibold, Petra |0 P:(DE-He78)fd17a8dbf8d08ea5bb656dfef7398215 |b 3 |u dkfz |
700 | 1 | _ | |a Obi, Nadia |b 4 |
700 | 1 | _ | |a Chang-Claude, Jenny |0 P:(DE-He78)c259d6cc99edf5c7bc7ce22c7f87c253 |b 5 |u dkfz |
700 | 1 | _ | |a Steindorf, Karen |0 P:(DE-He78)a0c2037d9054be26907a05ae520d5756 |b 6 |e Last author |u dkfz |
773 | _ | _ | |a 10.1002/ijc.34791 |g p. ijc.34791 |0 PERI:(DE-600)1474822-8 |n 6 |p 1011-1018 |t International journal of cancer |v 154 |y 2024 |x 0020-7136 |
909 | C | O | |p VDB |o oai:inrepo02.dkfz.de:285365 |
910 | 1 | _ | |a Deutsches Krebsforschungszentrum |0 I:(DE-588b)2036810-0 |k DKFZ |b 0 |6 P:(DE-He78)2def8f8594c8f797f5ed4398258c6cac |
910 | 1 | _ | |a Deutsches Krebsforschungszentrum |0 I:(DE-588b)2036810-0 |k DKFZ |b 2 |6 P:(DE-He78)6b04712f3afe72044d496a25505cb1ea |
910 | 1 | _ | |a Deutsches Krebsforschungszentrum |0 I:(DE-588b)2036810-0 |k DKFZ |b 3 |6 P:(DE-He78)fd17a8dbf8d08ea5bb656dfef7398215 |
910 | 1 | _ | |a Deutsches Krebsforschungszentrum |0 I:(DE-588b)2036810-0 |k DKFZ |b 5 |6 P:(DE-He78)c259d6cc99edf5c7bc7ce22c7f87c253 |
910 | 1 | _ | |a Deutsches Krebsforschungszentrum |0 I:(DE-588b)2036810-0 |k DKFZ |b 6 |6 P:(DE-He78)a0c2037d9054be26907a05ae520d5756 |
913 | 1 | _ | |a DE-HGF |b Gesundheit |l Krebsforschung |1 G:(DE-HGF)POF4-310 |0 G:(DE-HGF)POF4-313 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-300 |4 G:(DE-HGF)POF |v Krebsrisikofaktoren und Prävention |x 0 |
914 | 1 | _ | |y 2023 |
915 | _ | _ | |a Nationallizenz |0 StatID:(DE-HGF)0420 |2 StatID |d 2023-10-21 |w ger |
915 | _ | _ | |a DEAL Wiley |0 StatID:(DE-HGF)3001 |2 StatID |d 2023-10-21 |w ger |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2023-10-21 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2023-10-21 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2023-10-21 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1050 |2 StatID |b BIOSIS Previews |d 2023-10-21 |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2023-10-21 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2023-10-21 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1030 |2 StatID |b Current Contents - Life Sciences |d 2023-10-21 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1190 |2 StatID |b Biological Abstracts |d 2023-10-21 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2023-10-21 |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b INT J CANCER : 2022 |d 2023-10-21 |
915 | _ | _ | |a IF >= 5 |0 StatID:(DE-HGF)9905 |2 StatID |b INT J CANCER : 2022 |d 2023-10-21 |
920 | 2 | _ | |0 I:(DE-He78)C110-20160331 |k C110 |l Bewegung, Präventionsforschung und Krebs |x 0 |
920 | 1 | _ | |0 I:(DE-He78)C110-20160331 |k C110 |l Bewegung, Präventionsforschung und Krebs |x 0 |
920 | 1 | _ | |0 I:(DE-He78)C020-20160331 |k C020 |l C020 Epidemiologie von Krebs |x 1 |
920 | 0 | _ | |0 I:(DE-He78)C110-20160331 |k C110 |l Bewegung, Präventionsforschung und Krebs |x 0 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a I:(DE-He78)C110-20160331 |
980 | _ | _ | |a I:(DE-He78)C020-20160331 |
980 | _ | _ | |a UNRESTRICTED |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|