Home > Publications database > CpG-biomarkers in tumor tissue and prediction models for the survival of colorectal cancer: a systematic review and external validation study. > print |
001 | 285382 | ||
005 | 20240229155109.0 | ||
024 | 7 | _ | |a 10.1016/j.critrevonc.2023.104199 |2 doi |
024 | 7 | _ | |a pmid:37952858 |2 pmid |
024 | 7 | _ | |a 0737-9587 |2 ISSN |
024 | 7 | _ | |a 1040-8428 |2 ISSN |
024 | 7 | _ | |a 1879-0461 |2 ISSN |
024 | 7 | _ | |a altmetric:156395296 |2 altmetric |
037 | _ | _ | |a DKFZ-2023-02351 |
041 | _ | _ | |a English |
082 | _ | _ | |a 610 |
100 | 1 | _ | |a Yuan, Tanwei |0 P:(DE-He78)b9e439a1aa1244925f92d547c0919349 |b 0 |e First author |
245 | _ | _ | |a CpG-biomarkers in tumor tissue and prediction models for the survival of colorectal cancer: a systematic review and external validation study. |
260 | _ | _ | |a Amsterdam [u.a.] |c 2024 |b Elsevier Science |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1703148841_3537 |2 PUB:(DE-HGF) |x Review Article |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
500 | _ | _ | |a #EA:C070#LA:C070# / Volume 193, January 2024, 104199 / KST: F210 as Contributor |
520 | _ | _ | |a The research aimed to identify CpG-methylation-based prognostic biomarkers and prediction models for colorectal cancer (CRC) prognosis and validate them in a large external cohort. A systematic search was conducted, analyzing 298 unique CpGs and 12 CpG-based prognostic models from 28 studies. After adjustment for clinical variables, 48 CpGs and five prognostic models were confirmed to be associated with survival. However, the discrimination ability of the models was insufficient, with area under the receiver operating characteristic curves ranging from 0.53 to 0.62. Calibration accuracy was mostly poor, and no significant added prognostic value beyond traditional clinical variables was observed. All prognostic models were also rated at high risk of bias. While a fraction of CpGs showed potential clinical utility and generalizability, the CpG-based prognostic models performed poorly and lacked clinical relevance. |
536 | _ | _ | |a 313 - Krebsrisikofaktoren und Prävention (POF4-313) |0 G:(DE-HGF)POF4-313 |c POF4-313 |f POF IV |x 0 |
588 | _ | _ | |a Dataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de |
650 | _ | 7 | |a DNA methylation |2 Other |
650 | _ | 7 | |a biomarkers |2 Other |
650 | _ | 7 | |a colorectal cancer |2 Other |
650 | _ | 7 | |a external validation |2 Other |
650 | _ | 7 | |a prognosis |2 Other |
700 | 1 | _ | |a Edelmann, Dominic |0 P:(DE-He78)92820b4867c955a04f642707ecf35b40 |b 1 |
700 | 1 | _ | |a Kather, Jakob N |b 2 |
700 | 1 | _ | |a Fan, Ziwen |0 P:(DE-He78)79862c68074f8d78156f06f6e3c9801c |b 3 |
700 | 1 | _ | |a Tagscherer, Katrin E |b 4 |
700 | 1 | _ | |a Roth, Wilfried |b 5 |
700 | 1 | _ | |a Bewerunge-Hudler, Melanie |0 P:(DE-He78)7999346780553d7fab7ba69d5afdfa71 |b 6 |
700 | 1 | _ | |a Brobeil, Alexander |b 7 |
700 | 1 | _ | |a Kloor, Matthias |0 P:(DE-He78)028ee60cca729028708496826f077b58 |b 8 |u dkfz |
700 | 1 | _ | |a Bläker, Hendrik |b 9 |
700 | 1 | _ | |a Burwinkel, Barbara |0 P:(DE-He78)15b7fd2bc02d5ef47a2fe2dd0140d2bf |b 10 |
700 | 1 | _ | |a Brenner, Hermann |0 P:(DE-He78)90d5535ff896e70eed81f4a4f6f22ae2 |b 11 |
700 | 1 | _ | |a Hoffmeister, Michael |0 P:(DE-He78)6c5d058b7552d071a7fa4c5e943fff0f |b 12 |e Last author |
773 | _ | _ | |a 10.1016/j.critrevonc.2023.104199 |g p. 104199 - |0 PERI:(DE-600)2025731-4 |p 104199 |t Critical reviews in oncology, hematology |v 193 |y 2024 |x 0737-9587 |
909 | C | O | |p VDB |o oai:inrepo02.dkfz.de:285382 |
910 | 1 | _ | |a Deutsches Krebsforschungszentrum |0 I:(DE-588b)2036810-0 |k DKFZ |b 0 |6 P:(DE-He78)b9e439a1aa1244925f92d547c0919349 |
910 | 1 | _ | |a Deutsches Krebsforschungszentrum |0 I:(DE-588b)2036810-0 |k DKFZ |b 1 |6 P:(DE-He78)92820b4867c955a04f642707ecf35b40 |
910 | 1 | _ | |a Deutsches Krebsforschungszentrum |0 I:(DE-588b)2036810-0 |k DKFZ |b 3 |6 P:(DE-He78)79862c68074f8d78156f06f6e3c9801c |
910 | 1 | _ | |a Deutsches Krebsforschungszentrum |0 I:(DE-588b)2036810-0 |k DKFZ |b 6 |6 P:(DE-He78)7999346780553d7fab7ba69d5afdfa71 |
910 | 1 | _ | |a Deutsches Krebsforschungszentrum |0 I:(DE-588b)2036810-0 |k DKFZ |b 8 |6 P:(DE-He78)028ee60cca729028708496826f077b58 |
910 | 1 | _ | |a Deutsches Krebsforschungszentrum |0 I:(DE-588b)2036810-0 |k DKFZ |b 10 |6 P:(DE-He78)15b7fd2bc02d5ef47a2fe2dd0140d2bf |
910 | 1 | _ | |a Deutsches Krebsforschungszentrum |0 I:(DE-588b)2036810-0 |k DKFZ |b 11 |6 P:(DE-He78)90d5535ff896e70eed81f4a4f6f22ae2 |
910 | 1 | _ | |a Deutsches Krebsforschungszentrum |0 I:(DE-588b)2036810-0 |k DKFZ |b 12 |6 P:(DE-He78)6c5d058b7552d071a7fa4c5e943fff0f |
913 | 1 | _ | |a DE-HGF |b Gesundheit |l Krebsforschung |1 G:(DE-HGF)POF4-310 |0 G:(DE-HGF)POF4-313 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-300 |4 G:(DE-HGF)POF |v Krebsrisikofaktoren und Prävention |x 0 |
914 | 1 | _ | |y 2023 |
915 | _ | _ | |a Nationallizenz |0 StatID:(DE-HGF)0420 |2 StatID |d 2023-10-24 |w ger |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b CRIT REV ONCOL HEMAT : 2022 |d 2023-10-24 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2023-10-24 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2023-10-24 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |d 2023-10-24 |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |d 2023-10-24 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2023-10-24 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1050 |2 StatID |b BIOSIS Previews |d 2023-10-24 |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2023-10-24 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2023-10-24 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1120 |2 StatID |b BIOSIS Reviews Reports And Meetings |d 2023-10-24 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2023-10-24 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1110 |2 StatID |b Current Contents - Clinical Medicine |d 2023-10-24 |
915 | _ | _ | |a IF >= 5 |0 StatID:(DE-HGF)9905 |2 StatID |b CRIT REV ONCOL HEMAT : 2022 |d 2023-10-24 |
920 | 2 | _ | |0 I:(DE-He78)C070-20160331 |k C070 |l C070 Klinische Epidemiologie und Alternf. |x 0 |
920 | 1 | _ | |0 I:(DE-He78)C070-20160331 |k C070 |l C070 Klinische Epidemiologie und Alternf. |x 0 |
920 | 1 | _ | |0 I:(DE-He78)C120-20160331 |k C120 |l Präventive Onkologie |x 1 |
920 | 1 | _ | |0 I:(DE-He78)HD01-20160331 |k HD01 |l DKTK HD zentral |x 2 |
920 | 1 | _ | |0 I:(DE-He78)C060-20160331 |k C060 |l C060 Biostatistik |x 3 |
920 | 1 | _ | |0 I:(DE-He78)W110-20160331 |k W110 |l Microarrays |x 4 |
920 | 1 | _ | |0 I:(DE-He78)C080-20160331 |k C080 |l Molekulare Epidemiologie |x 5 |
920 | 1 | _ | |0 I:(DE-He78)F210-20160331 |k F210 |l KKE Angewandte Tumorbiologie |x 6 |
920 | 0 | _ | |0 I:(DE-He78)C070-20160331 |k C070 |l C070 Klinische Epidemiologie und Alternf. |x 0 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a I:(DE-He78)C070-20160331 |
980 | _ | _ | |a I:(DE-He78)C120-20160331 |
980 | _ | _ | |a I:(DE-He78)HD01-20160331 |
980 | _ | _ | |a I:(DE-He78)C060-20160331 |
980 | _ | _ | |a I:(DE-He78)W110-20160331 |
980 | _ | _ | |a I:(DE-He78)C080-20160331 |
980 | _ | _ | |a I:(DE-He78)F210-20160331 |
980 | _ | _ | |a UNRESTRICTED |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|