Home > Publications database > Predictors of early morbidity and mortality in newly diagnosed multiple myeloma: data from five randomized, controlled, phase III trials in 3700 patients. > print |
001 | 285996 | ||
005 | 20240306155143.0 | ||
024 | 7 | _ | |a 10.1038/s41375-023-02105-6 |2 doi |
024 | 7 | _ | |a pmid:38062124 |2 pmid |
024 | 7 | _ | |a 0887-6924 |2 ISSN |
024 | 7 | _ | |a 1476-5551 |2 ISSN |
024 | 7 | _ | |a altmetric:157604510 |2 altmetric |
037 | _ | _ | |a DKFZ-2023-02577 |
041 | _ | _ | |a English |
082 | _ | _ | |a 610 |
100 | 1 | _ | |a Mai, Elias K |0 0000-0002-6226-1252 |b 0 |
245 | _ | _ | |a Predictors of early morbidity and mortality in newly diagnosed multiple myeloma: data from five randomized, controlled, phase III trials in 3700 patients. |
260 | _ | _ | |a London |c 2024 |b Springer Nature |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1709736662_31139 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
500 | _ | _ | |a 2024 Mar;38(3):640-647 |
520 | _ | _ | |a Early morbidity and mortality affect patient outcomes in multiple myeloma. Thus, we dissected the incidence and causes of morbidity/mortality during induction therapy (IT) for newly diagnosed multiple myeloma (NDMM), and developed/validated a predictive risk score. We evaluated 3700 transplant-eligible NDMM patients treated in 2005-2020 with novel agent-based triplet/quadruplet IT. Primary endpoints were severe infections, death, or a combination of both. Patients were divided in a training (n = 1333) and three validation cohorts (n = 2367). During IT, 11.8%, 1.8%, and 12.5% of patients in the training cohort experienced severe infections, death, or both, respectively. Four major, baseline risk factors for severe infection/death were identified: low platelet count (<150/nL), ISS III, higher WHO performance status (>1), and age (>60 years). A risk score (1 risk factor=1 point) stratified patients in low (39.5%; 0 points), intermediate (41.9%; 1 point), and high (18.6%; ≥2 points) risk. The risk for severe infection/death increased from 7.7% vs. 11.5% vs. 23.3% in the low- vs. intermediate- vs. high-risk groups (p < 0.001). The risk score was independently validated in three trials incorporating quadruplet IT with an anti-CD38 antibody. Our analyses established a robust and easy-to-use score to identify NDMM patients at risk of severe infection/death, covering the latest quadruplet induction therapies. Trial registrations: HOVON-65/GMMG-HD4: EudraCT No. 2004-000944-26. GMMG-MM5: EudraCT No. 2010-019173-16. GMMG-HD6: NCT02495922. EMN02/HOVON-95: NCT01208766. GMMG-HD7: NCT03617731. |
536 | _ | _ | |a 313 - Krebsrisikofaktoren und Prävention (POF4-313) |0 G:(DE-HGF)POF4-313 |c POF4-313 |f POF IV |x 0 |
588 | _ | _ | |a Dataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de |
700 | 1 | _ | |a Hielscher, Thomas |0 P:(DE-He78)743a4a82daab55306a2c88b9f6bf8c2f |b 1 |u dkfz |
700 | 1 | _ | |a Bertsch, Uta |b 2 |
700 | 1 | _ | |a Salwender, Hans J |0 0000-0001-7803-0814 |b 3 |
700 | 1 | _ | |a Zweegman, Sonja |b 4 |
700 | 1 | _ | |a Raab, Marc S |b 5 |
700 | 1 | _ | |a Munder, Markus |b 6 |
700 | 1 | _ | |a Pantani, Lucia |b 7 |
700 | 1 | _ | |a Mancuso, Katia |0 0000-0002-1169-0129 |b 8 |
700 | 1 | _ | |a Brossart, Peter |b 9 |
700 | 1 | _ | |a Beksac, Meral |0 0000-0003-1797-8657 |b 10 |
700 | 1 | _ | |a Blau, Igor W |b 11 |
700 | 1 | _ | |a Dürig, Jan |b 12 |
700 | 1 | _ | |a Besemer, Britta |b 13 |
700 | 1 | _ | |a Fenk, Roland |b 14 |
700 | 1 | _ | |a Reimer, Peter |b 15 |
700 | 1 | _ | |a van der Holt, Bronno |0 0000-0001-6414-2671 |b 16 |
700 | 1 | _ | |a Hänel, Mathias |b 17 |
700 | 1 | _ | |a von Metzler, Ivana |b 18 |
700 | 1 | _ | |a Graeven, Ullrich |0 0000-0001-6082-7710 |b 19 |
700 | 1 | _ | |a Müller-Tidow, Carsten |b 20 |
700 | 1 | _ | |a Boccadoro, Mario |0 0000-0001-8130-5209 |b 21 |
700 | 1 | _ | |a Scheid, Christof |b 22 |
700 | 1 | _ | |a Dimopoulos, Meletios A |0 0000-0001-8990-3254 |b 23 |
700 | 1 | _ | |a Hillengass, Jens |b 24 |
700 | 1 | _ | |a Weisel, Katja C |0 0000-0001-9422-6614 |b 25 |
700 | 1 | _ | |a Cavo, Michele |0 0000-0003-4514-3227 |b 26 |
700 | 1 | _ | |a Sonneveld, Pieter |0 0000-0002-0808-2237 |b 27 |
700 | 1 | _ | |a Goldschmidt, Hartmut |b 28 |
773 | _ | _ | |a 10.1038/s41375-023-02105-6 |0 PERI:(DE-600)2008023-2 |n 3 |p 640-647 |t Leukemia |v 38 |y 2024 |x 0887-6924 |
909 | C | O | |p VDB |o oai:inrepo02.dkfz.de:285996 |
910 | 1 | _ | |a Deutsches Krebsforschungszentrum |0 I:(DE-588b)2036810-0 |k DKFZ |b 1 |6 P:(DE-He78)743a4a82daab55306a2c88b9f6bf8c2f |
913 | 1 | _ | |a DE-HGF |b Gesundheit |l Krebsforschung |1 G:(DE-HGF)POF4-310 |0 G:(DE-HGF)POF4-313 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-300 |4 G:(DE-HGF)POF |v Krebsrisikofaktoren und Prävention |x 0 |
914 | 1 | _ | |y 2023 |
915 | _ | _ | |a DEAL Springer |0 StatID:(DE-HGF)3002 |2 StatID |d 2023-08-23 |w ger |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2023-08-23 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2023-08-23 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1050 |2 StatID |b BIOSIS Previews |d 2023-08-23 |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2023-08-23 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2023-08-23 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1030 |2 StatID |b Current Contents - Life Sciences |d 2023-08-23 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1190 |2 StatID |b Biological Abstracts |d 2023-08-23 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2023-08-23 |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b LEUKEMIA : 2022 |d 2023-08-23 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2023-08-23 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |d 2023-08-23 |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |d 2023-08-23 |
915 | _ | _ | |a IF >= 10 |0 StatID:(DE-HGF)9910 |2 StatID |b LEUKEMIA : 2022 |d 2023-08-23 |
920 | 1 | _ | |0 I:(DE-He78)C060-20160331 |k C060 |l C060 Biostatistik |x 0 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a I:(DE-He78)C060-20160331 |
980 | _ | _ | |a UNRESTRICTED |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|