000286009 001__ 286009
000286009 005__ 20240229155118.0
000286009 0247_ $$2doi$$a10.1002/bimj.202200322
000286009 0247_ $$2pmid$$apmid:38063813
000286009 0247_ $$2ISSN$$a0323-3847
000286009 0247_ $$2ISSN$$a0006-3452
000286009 0247_ $$2ISSN$$a1521-4036
000286009 0247_ $$2altmetric$$aaltmetric:157337921
000286009 037__ $$aDKFZ-2023-02586
000286009 041__ $$aEnglish
000286009 082__ $$a570
000286009 1001_ $$0P:(DE-He78)b5d9469407737829d5348adb615655c6$$aCalderazzo, Silvia$$b0$$eFirst author$$udkfz
000286009 245__ $$aRobust incorporation of historical information with known type I error rate inflation.
000286009 260__ $$aBerlin$$bWiley-VCH$$c2024
000286009 3367_ $$2DRIVER$$aarticle
000286009 3367_ $$2DataCite$$aOutput Types/Journal article
000286009 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1706708087_24338
000286009 3367_ $$2BibTeX$$aARTICLE
000286009 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000286009 3367_ $$00$$2EndNote$$aJournal Article
000286009 500__ $$a#EA:C060#LA:C060# / 2024 Jan;66(1):e2200322
000286009 520__ $$aBayesian clinical trials can benefit from available historical information through the specification of informative prior distributions. Concerns are however often raised about the potential for prior-data conflict and the impact of Bayes test decisions on frequentist operating characteristics, with particular attention being assigned to inflation of type I error (TIE) rates. This motivates the development of principled borrowing mechanisms, that strike a balance between frequentist and Bayesian decisions. Ideally, the trust assigned to historical information defines the degree of robustness to prior-data conflict one is willing to sacrifice. However, such relationship is often not directly available when explicitly considering inflation of TIE rates. We build on available literature relating frequentist and Bayesian test decisions, and investigate a rationale for inflation of TIE rate which explicitly and linearly relates the amount of borrowing and the amount of TIE rate inflation in one-arm studies. A novel dynamic borrowing mechanism tailored to hypothesis testing is additionally proposed. We show that, while dynamic borrowing prevents the possibility to obtain a simple closed-form TIE rate computation, an explicit upper bound can still be enforced. Connections with the robust mixture prior approach, particularly in relation to the choice of the mixture weight and robust component, are made. Simulations are performed to show the properties of the approach for normal and binomial outcomes, and an exemplary application is demonstrated in a case study.
000286009 536__ $$0G:(DE-HGF)POF4-313$$a313 - Krebsrisikofaktoren und Prävention (POF4-313)$$cPOF4-313$$fPOF IV$$x0
000286009 588__ $$aDataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
000286009 650_7 $$2Other$$aBayesian trial design
000286009 650_7 $$2Other$$aborrowing of historical information
000286009 650_7 $$2Other$$arobust borrowing
000286009 650_7 $$2Other$$atype I error rate
000286009 7001_ $$0P:(DE-He78)1042737c83ba70ec508bdd99f0096864$$aWiesenfarth, Manuel$$b1$$udkfz
000286009 7001_ $$0P:(DE-He78)bb6a7a70f976eb8df1769944bf913596$$aKopp-Schneider, Annette$$b2$$eLast author$$udkfz
000286009 773__ $$0PERI:(DE-600)1479920-0$$a10.1002/bimj.202200322$$gp. 2200322$$n1$$pe2200322$$tBiometrical journal$$v66$$x0323-3847$$y2024
000286009 909CO $$ooai:inrepo02.dkfz.de:286009$$pVDB
000286009 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)b5d9469407737829d5348adb615655c6$$aDeutsches Krebsforschungszentrum$$b0$$kDKFZ
000286009 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)1042737c83ba70ec508bdd99f0096864$$aDeutsches Krebsforschungszentrum$$b1$$kDKFZ
000286009 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)bb6a7a70f976eb8df1769944bf913596$$aDeutsches Krebsforschungszentrum$$b2$$kDKFZ
000286009 9131_ $$0G:(DE-HGF)POF4-313$$1G:(DE-HGF)POF4-310$$2G:(DE-HGF)POF4-300$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vKrebsrisikofaktoren und Prävention$$x0
000286009 9141_ $$y2023
000286009 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2023-10-21$$wger
000286009 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2023-10-21$$wger
000286009 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-10-21
000286009 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-10-21
000286009 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-10-21
000286009 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2023-10-21
000286009 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-10-21
000286009 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-10-21
000286009 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2023-10-21
000286009 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-10-21
000286009 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bBIOMETRICAL J : 2022$$d2023-10-21
000286009 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2023-10-21
000286009 9202_ $$0I:(DE-He78)C060-20160331$$kC060$$lC060 Biostatistik$$x0
000286009 9201_ $$0I:(DE-He78)C060-20160331$$kC060$$lC060 Biostatistik$$x0
000286009 9200_ $$0I:(DE-He78)C060-20160331$$kC060$$lC060 Biostatistik$$x0
000286009 980__ $$ajournal
000286009 980__ $$aVDB
000286009 980__ $$aI:(DE-He78)C060-20160331
000286009 980__ $$aUNRESTRICTED