001     286009
005     20240229155118.0
024 7 _ |a 10.1002/bimj.202200322
|2 doi
024 7 _ |a pmid:38063813
|2 pmid
024 7 _ |a 0323-3847
|2 ISSN
024 7 _ |a 0006-3452
|2 ISSN
024 7 _ |a 1521-4036
|2 ISSN
024 7 _ |a altmetric:157337921
|2 altmetric
037 _ _ |a DKFZ-2023-02586
041 _ _ |a English
082 _ _ |a 570
100 1 _ |a Calderazzo, Silvia
|0 P:(DE-He78)b5d9469407737829d5348adb615655c6
|b 0
|e First author
|u dkfz
245 _ _ |a Robust incorporation of historical information with known type I error rate inflation.
260 _ _ |a Berlin
|c 2024
|b Wiley-VCH
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1706708087_24338
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a #EA:C060#LA:C060# / 2024 Jan;66(1):e2200322
520 _ _ |a Bayesian clinical trials can benefit from available historical information through the specification of informative prior distributions. Concerns are however often raised about the potential for prior-data conflict and the impact of Bayes test decisions on frequentist operating characteristics, with particular attention being assigned to inflation of type I error (TIE) rates. This motivates the development of principled borrowing mechanisms, that strike a balance between frequentist and Bayesian decisions. Ideally, the trust assigned to historical information defines the degree of robustness to prior-data conflict one is willing to sacrifice. However, such relationship is often not directly available when explicitly considering inflation of TIE rates. We build on available literature relating frequentist and Bayesian test decisions, and investigate a rationale for inflation of TIE rate which explicitly and linearly relates the amount of borrowing and the amount of TIE rate inflation in one-arm studies. A novel dynamic borrowing mechanism tailored to hypothesis testing is additionally proposed. We show that, while dynamic borrowing prevents the possibility to obtain a simple closed-form TIE rate computation, an explicit upper bound can still be enforced. Connections with the robust mixture prior approach, particularly in relation to the choice of the mixture weight and robust component, are made. Simulations are performed to show the properties of the approach for normal and binomial outcomes, and an exemplary application is demonstrated in a case study.
536 _ _ |a 313 - Krebsrisikofaktoren und Prävention (POF4-313)
|0 G:(DE-HGF)POF4-313
|c POF4-313
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
650 _ 7 |a Bayesian trial design
|2 Other
650 _ 7 |a borrowing of historical information
|2 Other
650 _ 7 |a robust borrowing
|2 Other
650 _ 7 |a type I error rate
|2 Other
700 1 _ |a Wiesenfarth, Manuel
|0 P:(DE-He78)1042737c83ba70ec508bdd99f0096864
|b 1
|u dkfz
700 1 _ |a Kopp-Schneider, Annette
|0 P:(DE-He78)bb6a7a70f976eb8df1769944bf913596
|b 2
|e Last author
|u dkfz
773 _ _ |a 10.1002/bimj.202200322
|g p. 2200322
|0 PERI:(DE-600)1479920-0
|n 1
|p e2200322
|t Biometrical journal
|v 66
|y 2024
|x 0323-3847
909 C O |p VDB
|o oai:inrepo02.dkfz.de:286009
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 0
|6 P:(DE-He78)b5d9469407737829d5348adb615655c6
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 1
|6 P:(DE-He78)1042737c83ba70ec508bdd99f0096864
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 2
|6 P:(DE-He78)bb6a7a70f976eb8df1769944bf913596
913 1 _ |a DE-HGF
|b Gesundheit
|l Krebsforschung
|1 G:(DE-HGF)POF4-310
|0 G:(DE-HGF)POF4-313
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Krebsrisikofaktoren und Prävention
|x 0
914 1 _ |y 2023
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2023-10-21
|w ger
915 _ _ |a DEAL Wiley
|0 StatID:(DE-HGF)3001
|2 StatID
|d 2023-10-21
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-10-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-10-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-10-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2023-10-21
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2023-10-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-10-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2023-10-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2023-10-21
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b BIOMETRICAL J : 2022
|d 2023-10-21
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2023-10-21
920 2 _ |0 I:(DE-He78)C060-20160331
|k C060
|l C060 Biostatistik
|x 0
920 1 _ |0 I:(DE-He78)C060-20160331
|k C060
|l C060 Biostatistik
|x 0
920 0 _ |0 I:(DE-He78)C060-20160331
|k C060
|l C060 Biostatistik
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)C060-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21