000286023 001__ 286023
000286023 005__ 20240414010445.0
000286023 0247_ $$2doi$$a10.1002/mp.16865
000286023 0247_ $$2pmid$$apmid:38071746
000286023 0247_ $$2ISSN$$a0094-2405
000286023 0247_ $$2ISSN$$a1522-8541
000286023 0247_ $$2ISSN$$a2473-4209
000286023 0247_ $$2altmetric$$aaltmetric:158300084
000286023 037__ $$aDKFZ-2023-02600
000286023 041__ $$aEnglish
000286023 082__ $$a610
000286023 1001_ $$aFaddegon, Bruce$$b0
000286023 245__ $$aA digital male pelvis phantom series showing anatomical variations over the course of fractionated radiotherapy treatment.
000286023 260__ $$aCollege Park, Md.$$bAAPM$$c2024
000286023 3367_ $$2DRIVER$$aarticle
000286023 3367_ $$2DataCite$$aOutput Types/Journal article
000286023 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1712563487_11099
000286023 3367_ $$2BibTeX$$aARTICLE
000286023 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000286023 3367_ $$00$$2EndNote$$aJournal Article
000286023 500__ $$a2024 Apr;51(4):3034-3044
000286023 520__ $$aDaily IGRT images show day-to-day anatomical variations in patients undergoing fractionated prostate radiotherapy. This is of particular importance in particle beam treatments.To develop a digital phantom series showing variation in pelvic anatomy for evaluating treatment planning and IGRT procedures in particle radiotherapy.A pelvic phantom series was developed from the planning MRI and kVCT (planning CT) images along with six of the daily serial MVCT images taken of a single patient treated with a full bladder on a Tomotherapy unit. The selected patient had clearly visible yet unexceptional internal anatomy variation. Prostate, urethra, bladder, rectum, bowel, bowel gas, bone and soft tissue were contoured and a single Hounsfield Unit was assigned to each region. Treatment plans developed on the kVCT for photon, proton and carbon beams were recalculated on each phantom to demonstrate a clinical application of the series. Proton plans were developed with and without robust optimization.Limited to axial slices with prostate, the bladder volume varied from 6 to 46 cm3 , the rectal volume (excluding gas) from 22 to 52 cm3 , and rectal gas volume from zero to 18 cm3 . The water equivalent path length to the prostate varied by up to 1.5 cm . The variations resulted in larger changes in the RBE-weighted Dose Volume Histograms of the non-robust proton plan and the carbon plan compared to the robust proton plan, the latter similar to the photon plan. The prostate coverage (V100%) decreased by an average of 18% in the carbon plan, 16% in the non-robust proton plan, 1.8% in the robust proton plan, and 4.4% in the photon plan. The volume of rectum receiving 75% of the prescription dose (V75%) increased by an average of 3.7 cm3 , 4.7 cm3 , 1.9 cm3 , and 0.6 cm3 in those four plans, respectively.The digital pelvic phantom series provides for quantitative investigation of IGRT procedures and new methods for improving accuracy in particle therapy and may be used in cross-institutional comparisons for clinical trial quality assurance.
000286023 536__ $$0G:(DE-HGF)POF4-315$$a315 - Bildgebung und Radioonkologie (POF4-315)$$cPOF4-315$$fPOF IV$$x0
000286023 588__ $$aDataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
000286023 650_7 $$2Other$$ainterfraction motion
000286023 650_7 $$2Other$$aion beams
000286023 650_7 $$2Other$$apelvis phantom
000286023 650_7 $$2Other$$aprostate
000286023 650_7 $$2Other$$aprotons
000286023 650_7 $$2Other$$atreatment planning
000286023 7001_ $$aDescovich, Martina$$b1
000286023 7001_ $$aChen, Katherine$$b2
000286023 7001_ $$aRamos-Méndez, José$$b3
000286023 7001_ $$aIii, Mack Roach$$b4
000286023 7001_ $$0P:(DE-He78)dfd5aaf608015baaaed0a15b473f1336$$aWahl, Niklas$$b5$$udkfz
000286023 7001_ $$aTaylor, Paige$$b6
000286023 7001_ $$aGriffin, Keith$$b7
000286023 7001_ $$aLee, Choonsik$$b8
000286023 773__ $$0PERI:(DE-600)1466421-5$$a10.1002/mp.16865$$gp. mp.16865$$n4$$p3034-3044$$tMedical physics$$v51$$x0094-2405$$y2024
000286023 909CO $$ooai:inrepo02.dkfz.de:286023$$pVDB
000286023 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)dfd5aaf608015baaaed0a15b473f1336$$aDeutsches Krebsforschungszentrum$$b5$$kDKFZ
000286023 9131_ $$0G:(DE-HGF)POF4-315$$1G:(DE-HGF)POF4-310$$2G:(DE-HGF)POF4-300$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vBildgebung und Radioonkologie$$x0
000286023 9141_ $$y2023
000286023 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2023-10-21$$wger
000286023 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bMED PHYS : 2022$$d2023-10-21
000286023 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-10-21
000286023 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-10-21
000286023 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central$$d2023-10-21
000286023 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2023-10-21
000286023 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2023-10-21
000286023 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-10-21
000286023 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-10-21
000286023 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-10-21
000286023 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2023-10-21
000286023 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-10-21
000286023 915__ $$0StatID:(DE-HGF)1110$$2StatID$$aDBCoverage$$bCurrent Contents - Clinical Medicine$$d2023-10-21
000286023 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2023-10-21
000286023 9201_ $$0I:(DE-He78)E040-20160331$$kE040$$lE040 Med. Physik in der Strahlentherapie$$x0
000286023 980__ $$ajournal
000286023 980__ $$aVDB
000286023 980__ $$aI:(DE-He78)E040-20160331
000286023 980__ $$aUNRESTRICTED