001     286105
005     20240724161214.0
024 7 _ |a 10.3389/fimmu.2023.1286688
|2 doi
024 7 _ |a pmid:38077312
|2 pmid
024 7 _ |a pmc:PMC10702483
|2 pmc
024 7 _ |a altmetric:157390711
|2 altmetric
037 _ _ |a DKFZ-2023-02681
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a Volkmar, Michael
|b 0
245 _ _ |a Identification of TRDV-TRAJ V domains in human and mouse T-cell receptor repertoires.
260 _ _ |a Lausanne
|c 2023
|b Frontiers Media
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1721830315_9952
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a HI-TRON
520 _ _ |a Here, we describe the identification of two T-cell receptors (TRs) containing TRDV genes in their TRA chains, the first one in human and the second one in mouse. First, using 5'RACE on a mixed lymphocyte-tumor cell culture (MLTC), we identified TRDV1 5'-untranslated region (UTR) and complete coding sequence rearranged productively to TRAJ24. Single-cell TR RNA sequencing (RNA-seq) of the MLTC, conducted to identify additional clonotypes, revealed that the analysis software detected the hybrid TRDV-TRAJ TRA (TRA) chain but excluded it from the final results. In a separate project, we performed TR sequencing of tumor-infiltrating lymphocytes (TILs) in a murine tumor model. Here, the predominant clonotype contained a TRA chain with a TRDV2-2-TRAJ49 rearrangement. Again, the hybrid TRA chain was not reported in the final results. Transfection of both TR cDNAs resulted in cell surface localization of TR together with CD3, suggesting a productive protein in both cases. Tumor recognition of the Homo sapiens (Homsap) TRDV1-containing TR could be demonstrated by IFN Gamma ELISA ELISpot kit, whereas the Mus musculus (Musmus) TR did not recognize a tumor-derived cell line. To determine whether the TRDV-containing TRA chains we detected were rare events or whether TRDV genes are commonly incorporated into TRA chains, we queried the NCBI Sequence Read Archive for TR single-cell RNA-seq data and analyzed 21 human and 23 murine datasets. We found that especially Homsap TRDV1, Musmus TRDV1, and to some extent Musmus TRDV2-2 are more commonly incorporated into TRA chains than several TRAV genes, making those TRDV genes a relevant contribution to TRA diversity. TRDV-containing TRA chains are currently excluded from the final results of V-(D)-J dataset analyses with the CellRanger software. We provide a work-around to avoid exclusion of those hybrid TRA chains from the final analysis results.
536 _ _ |a 314 - Immunologie und Krebs (POF4-314)
|0 G:(DE-HGF)POF4-314
|c POF4-314
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
650 _ 7 |a T cell receptor (TR)
|2 Other
650 _ 7 |a TCR
|2 Other
650 _ 7 |a TRDV-TRAJ
|2 Other
650 _ 7 |a TRDV1
|2 Other
650 _ 7 |a V-(D)-J rearrangement
|2 Other
650 _ 7 |a hybrid V-domain
|2 Other
700 1 _ |a Fakhr, Elham
|b 1
700 1 _ |a Zens, Stefan
|0 P:(DE-He78)17b0a821061db042fe4b6eff379d1ba6
|b 2
|u dkfz
700 1 _ |a Bury, Alice
|b 3
700 1 _ |a Offringa, Rienk
|0 P:(DE-He78)81ae96953d6149e4307057d71a190019
|b 4
|u dkfz
700 1 _ |a Gordon, Jessica
|b 5
700 1 _ |a Huduti, Enes
|b 6
700 1 _ |a Wölfel, Thomas
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Wölfel, Catherine
|0 P:(DE-He78)9cdc7d76865e19ae92ef6d41f558ed16
|b 8
|u dkfz
773 _ _ |a 10.3389/fimmu.2023.1286688
|g Vol. 14, p. 1286688
|0 PERI:(DE-600)2606827-8
|p 1286688
|t Frontiers in immunology
|v 14
|y 2023
|x 1664-3224
909 C O |p VDB
|o oai:inrepo02.dkfz.de:286105
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 2
|6 P:(DE-He78)17b0a821061db042fe4b6eff379d1ba6
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 4
|6 P:(DE-He78)81ae96953d6149e4307057d71a190019
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 7
|6 P:(DE-HGF)0
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 8
|6 P:(DE-He78)9cdc7d76865e19ae92ef6d41f558ed16
913 1 _ |a DE-HGF
|b Gesundheit
|l Krebsforschung
|1 G:(DE-HGF)POF4-310
|0 G:(DE-HGF)POF4-314
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Immunologie und Krebs
|x 0
914 1 _ |y 2023
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b FRONT IMMUNOL : 2022
|d 2023-10-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-10-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-10-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0320
|2 StatID
|b PubMed Central
|d 2023-10-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2021-05-11T10:28:02Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2021-05-11T10:28:02Z
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Anonymous peer review
|d 2021-05-11T10:28:02Z
915 _ _ |a Creative Commons Attribution CC BY (No Version)
|0 LIC:(DE-HGF)CCBYNV
|2 V:(DE-HGF)
|b DOAJ
|d 2021-05-11T10:28:02Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-10-26
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2023-10-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-10-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2023-10-26
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b FRONT IMMUNOL : 2022
|d 2023-10-26
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2023-10-26
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2023-10-26
920 1 _ |0 I:(DE-He78)D200-20160331
|k D200
|l Molekulare Grundlagen Gastrointestinaler Tumoren
|x 0
920 1 _ |0 I:(DE-He78)FM01-20160331
|k FM01
|l DKTK Koordinierungsstelle Frankfurt
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)D200-20160331
980 _ _ |a I:(DE-He78)FM01-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21