001     286281
005     20240229155124.0
024 7 _ |2 doi
|a 10.26508/lsa.202302309
024 7 _ |2 pmid
|a pmid:38110222
024 7 _ |a altmetric:157589175
|2 altmetric
037 _ _ |a DKFZ-2023-02768
041 _ _ |a English
082 _ _ |a 570
100 1 _ |a Bouman, Brigitte J
|b 0
245 _ _ |a Single-cell time series analysis reveals the dynamics of HSPC response to inflammation.
260 _ _ |a Heidelberg
|b EMBO Press
|c 2023
336 7 _ |2 DRIVER
|a article
336 7 _ |2 DataCite
|a Output Types/Journal article
336 7 _ |0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
|a Journal Article
|b journal
|m journal
|s 1703152421_4066
336 7 _ |2 BibTeX
|a ARTICLE
336 7 _ |2 ORCID
|a JOURNAL_ARTICLE
336 7 _ |0 0
|2 EndNote
|a Journal Article
500 _ _ |a DKFZ–ZMBH Alliance / #EA:A011#LA:A011#
520 _ _ |a Hematopoietic stem and progenitor cells (HSPCs) are known to respond to acute inflammation; however, little is understood about the dynamics and heterogeneity of these stress responses in HSPCs. Here, we performed single-cell sequencing during the sensing, response, and recovery phases of the inflammatory response of HSPCs to treatment (a total of 10,046 cells from four time points spanning the first 72 h of response) with the pro-inflammatory cytokine IFNα to investigate the HSPCs' dynamic changes during acute inflammation. We developed the essential novel computational approaches to process and analyze the resulting single-cell time series dataset. This includes an unbiased cell type annotation and abundance analysis post inflammation, tools for identification of global and cell type-specific responding genes, and a semi-supervised linear regression approach for response pseudotime reconstruction. We discovered a variety of different gene responses of the HSPCs to the treatment. Interestingly, we were able to associate a global reduced myeloid differentiation program and a locally enhanced pyroptosis activity with reduced myeloid progenitor and differentiated cells after IFNα treatment. Altogether, the single-cell time series analyses have allowed us to unbiasedly study the heterogeneous and dynamic impact of IFNα on the HSPCs.
536 _ _ |0 G:(DE-HGF)POF4-311
|a 311 - Zellbiologie und Tumorbiologie (POF4-311)
|c POF4-311
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
650 _ 2 |2 MeSH
|a Humans
650 _ 2 |2 MeSH
|a Time Factors
650 _ 2 |2 MeSH
|a Hematopoietic Stem Cells
650 _ 2 |2 MeSH
|a Cell Differentiation: genetics
650 _ 2 |2 MeSH
|a Hematopoiesis: genetics
650 _ 2 |2 MeSH
|a Inflammation: metabolism
700 1 _ |0 P:(DE-He78)5dd8fe881be96755fdff6576c9f8c11f
|a Demerdash, Yasmin
|b 1
|e First author
|u dkfz
700 1 _ |0 P:(DE-He78)dbe2fd9578ec0bf59e0e17592b04f22f
|a Sood, Shubhankar
|b 2
|u dkfz
700 1 _ |0 P:(DE-He78)6b879b5f67d8b3bcdffc7c01cbf8d1f1
|a Grünschläger, Florian
|b 3
|u dkfz
700 1 _ |0 P:(DE-He78)fc5931eb2c72c84c56b289eeedc6758c
|a Pilz, Franziska
|b 4
|u dkfz
700 1 _ |0 P:(DE-He78)95e6d7666dcf19dcfa2b9a9a6ada3d86
|a Itani, Abdul Rahman
|b 5
|u dkfz
700 1 _ |0 P:(DE-He78)fa2049c5d1b3a53b145d94b5830b3c47
|a Kuck, Andrea
|b 6
|u dkfz
700 1 _ |0 0000-0002-8362-9634
|a Marot-Lassauzaie, Valérie
|b 7
700 1 _ |0 P:(DE-He78)a5ec4e2fef99022a37a6b07c2fdd6325
|a Haas, Simon
|b 8
|u dkfz
700 1 _ |0 0000-0001-9280-9170
|a Haghverdi, Laleh
|b 9
700 1 _ |0 P:(DE-He78)ba3fae49054b6bfaaa289b05ecd936d6
|a Essers, Marieke
|b 10
|e Last author
|u dkfz
773 _ _ |0 PERI:(DE-600)2948687-7
|a 10.26508/lsa.202302309
|g Vol. 7, no. 3, p. e202302309 -
|n 3
|p e202302309
|t Life science alliance
|v 7
|x 2575-1077
|y 2024
909 C O |o oai:inrepo02.dkfz.de:286281
|p VDB
910 1 _ |0 I:(DE-588b)2036810-0
|6 P:(DE-He78)5dd8fe881be96755fdff6576c9f8c11f
|a Deutsches Krebsforschungszentrum
|b 1
|k DKFZ
910 1 _ |0 I:(DE-588b)2036810-0
|6 P:(DE-He78)dbe2fd9578ec0bf59e0e17592b04f22f
|a Deutsches Krebsforschungszentrum
|b 2
|k DKFZ
910 1 _ |0 I:(DE-588b)2036810-0
|6 P:(DE-He78)6b879b5f67d8b3bcdffc7c01cbf8d1f1
|a Deutsches Krebsforschungszentrum
|b 3
|k DKFZ
910 1 _ |0 I:(DE-588b)2036810-0
|6 P:(DE-He78)fc5931eb2c72c84c56b289eeedc6758c
|a Deutsches Krebsforschungszentrum
|b 4
|k DKFZ
910 1 _ |0 I:(DE-588b)2036810-0
|6 P:(DE-He78)95e6d7666dcf19dcfa2b9a9a6ada3d86
|a Deutsches Krebsforschungszentrum
|b 5
|k DKFZ
910 1 _ |0 I:(DE-588b)2036810-0
|6 P:(DE-He78)fa2049c5d1b3a53b145d94b5830b3c47
|a Deutsches Krebsforschungszentrum
|b 6
|k DKFZ
910 1 _ |0 I:(DE-588b)2036810-0
|6 P:(DE-He78)a5ec4e2fef99022a37a6b07c2fdd6325
|a Deutsches Krebsforschungszentrum
|b 8
|k DKFZ
910 1 _ |0 I:(DE-588b)2036810-0
|6 P:(DE-He78)ba3fae49054b6bfaaa289b05ecd936d6
|a Deutsches Krebsforschungszentrum
|b 10
|k DKFZ
913 1 _ |0 G:(DE-HGF)POF4-311
|1 G:(DE-HGF)POF4-310
|2 G:(DE-HGF)POF4-300
|3 G:(DE-HGF)POF4
|4 G:(DE-HGF)POF
|a DE-HGF
|b Gesundheit
|l Krebsforschung
|v Zellbiologie und Tumorbiologie
|x 0
914 1 _ |y 2023
915 _ _ |0 StatID:(DE-HGF)0100
|2 StatID
|a JCR
|b LIFE SCI ALLIANCE : 2022
|d 2023-10-27
915 _ _ |0 StatID:(DE-HGF)0200
|2 StatID
|a DBCoverage
|b SCOPUS
|d 2023-10-27
915 _ _ |0 StatID:(DE-HGF)0300
|2 StatID
|a DBCoverage
|b Medline
|d 2023-10-27
915 _ _ |0 StatID:(DE-HGF)0320
|2 StatID
|a DBCoverage
|b PubMed Central
|d 2023-10-27
915 _ _ |0 StatID:(DE-HGF)0501
|2 StatID
|a DBCoverage
|b DOAJ Seal
|d 2022-02-08T19:01:09Z
915 _ _ |0 StatID:(DE-HGF)0500
|2 StatID
|a DBCoverage
|b DOAJ
|d 2022-02-08T19:01:09Z
915 _ _ |0 StatID:(DE-HGF)0030
|2 StatID
|a Peer Review
|b DOAJ : Anonymous peer review
|d 2022-02-08T19:01:09Z
915 _ _ |0 LIC:(DE-HGF)CCBYNV
|2 V:(DE-HGF)
|a Creative Commons Attribution CC BY (No Version)
|b DOAJ
|d 2022-02-08T19:01:09Z
915 _ _ |0 StatID:(DE-HGF)0199
|2 StatID
|a DBCoverage
|b Clarivate Analytics Master Journal List
|d 2023-10-27
915 _ _ |0 StatID:(DE-HGF)1050
|2 StatID
|a DBCoverage
|b BIOSIS Previews
|d 2023-10-27
915 _ _ |0 StatID:(DE-HGF)0113
|2 StatID
|a WoS
|b Science Citation Index Expanded
|d 2023-10-27
915 _ _ |0 StatID:(DE-HGF)0150
|2 StatID
|a DBCoverage
|b Web of Science Core Collection
|d 2023-10-27
915 _ _ |0 StatID:(DE-HGF)1030
|2 StatID
|a DBCoverage
|b Current Contents - Life Sciences
|d 2023-10-27
915 _ _ |0 StatID:(DE-HGF)1190
|2 StatID
|a DBCoverage
|b Biological Abstracts
|d 2023-10-27
915 _ _ |0 StatID:(DE-HGF)0160
|2 StatID
|a DBCoverage
|b Essential Science Indicators
|d 2023-10-27
915 _ _ |0 StatID:(DE-HGF)9900
|2 StatID
|a IF < 5
|d 2023-10-27
915 _ _ |0 StatID:(DE-HGF)0561
|2 StatID
|a Article Processing Charges
|d 2023-10-27
915 _ _ |0 StatID:(DE-HGF)0700
|2 StatID
|a Fees
|d 2023-10-27
920 2 _ |0 I:(DE-He78)A011-20160331
|k A011
|l A011 Stressinduzierte Aktivierung von Hämatopeotischen Stammzellen
|x 0
920 1 _ |0 I:(DE-He78)A011-20160331
|k A011
|l A011 Stressinduzierte Aktivierung von Hämatopeotischen Stammzellen
|x 0
920 1 _ |0 I:(DE-He78)A010-20160331
|k A010
|l A010 Stammzellen und Krebs
|x 1
920 1 _ |0 I:(DE-He78)BE01-20160331
|k BE01
|l DKTK Koordinierungsstelle Berlin
|x 2
920 0 _ |0 I:(DE-He78)A011-20160331
|k A011
|l A011 Stressinduzierte Aktivierung von Hämatopeotischen Stammzellen
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)A011-20160331
980 _ _ |a I:(DE-He78)A010-20160331
980 _ _ |a I:(DE-He78)BE01-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21