000286376 001__ 286376
000286376 005__ 20240229155125.0
000286376 0247_ $$2doi$$a10.1016/S2589-7500(23)00208-X
000286376 0247_ $$2pmid$$apmid:38123254
000286376 0247_ $$2altmetric$$aaltmetric:157572607
000286376 037__ $$aDKFZ-2023-02779
000286376 041__ $$aEnglish
000286376 082__ $$a610
000286376 1001_ $$aJiang, Xiaofeng$$b0
000286376 245__ $$aEnd-to-end prognostication in colorectal cancer by deep learning: a retrospective, multicentre study.
000286376 260__ $$aLondon$$bThe Lancet$$c2023
000286376 3367_ $$2DRIVER$$aarticle
000286376 3367_ $$2DataCite$$aOutput Types/Journal article
000286376 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1703161016_4566
000286376 3367_ $$2BibTeX$$aARTICLE
000286376 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000286376 3367_ $$00$$2EndNote$$aJournal Article
000286376 520__ $$aPrecise prognosis prediction in patients with colorectal cancer (ie, forecasting survival) is pivotal for individualised treatment and care. Histopathological tissue slides of colorectal cancer specimens contain rich prognostically relevant information. However, existing studies do not have multicentre external validation with real-world sample processing protocols, and algorithms are not yet widely used in clinical routine.In this retrospective, multicentre study, we collected tissue samples from four groups of patients with resected colorectal cancer from Australia, Germany, and the USA. We developed and externally validated a deep learning-based prognostic-stratification system for automatic prediction of overall and cancer-specific survival in patients with resected colorectal cancer. We used the model-predicted risk scores to stratify patients into different risk groups and compared survival outcomes between these groups. Additionally, we evaluated the prognostic value of these risk groups after adjusting for established prognostic variables.We trained and validated our model on a total of 4428 patients. We found that patients could be divided into high-risk and low-risk groups on the basis of the deep learning-based risk score. On the internal test set, the group with a high-risk score had a worse prognosis than the group with a low-risk score, as reflected by a hazard ratio (HR) of 4·50 (95% CI 3·33-6·09) for overall survival and 8·35 (5·06-13·78) for disease-specific survival (DSS). We found consistent performance across three large external test sets. In a test set of 1395 patients, the high-risk group had a lower DSS than the low-risk group, with an HR of 3·08 (2·44-3·89). In two additional test sets, the HRs for DSS were 2·23 (1·23-4·04) and 3·07 (1·78-5·3). We showed that the prognostic value of the deep learning-based risk score is independent of established clinical risk factors.Our findings indicate that attention-based self-supervised deep learning can robustly offer a prognosis on clinical outcomes in patients with colorectal cancer, generalising across different populations and serving as a potentially new prognostic tool in clinical decision making for colorectal cancer management. We release all source codes and trained models under an open-source licence, allowing other researchers to reuse and build upon our work.The German Federal Ministry of Health, the Max-Eder-Programme of German Cancer Aid, the German Federal Ministry of Education and Research, the German Academic Exchange Service, and the EU.
000286376 536__ $$0G:(DE-HGF)POF4-313$$a313 - Krebsrisikofaktoren und Prävention (POF4-313)$$cPOF4-313$$fPOF IV$$x0
000286376 588__ $$aDataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
000286376 7001_ $$0P:(DE-He78)6c5d058b7552d071a7fa4c5e943fff0f$$aHoffmeister, Michael$$b1$$udkfz
000286376 7001_ $$0P:(DE-He78)90d5535ff896e70eed81f4a4f6f22ae2$$aBrenner, Hermann$$b2$$udkfz
000286376 7001_ $$aMuti, Hannah Sophie$$b3
000286376 7001_ $$0P:(DE-He78)b9e439a1aa1244925f92d547c0919349$$aYuan, Tanwei$$b4$$udkfz
000286376 7001_ $$aFoersch, Sebastian$$b5
000286376 7001_ $$aWest, Nicholas P$$b6
000286376 7001_ $$aBrobeil, Alexander$$b7
000286376 7001_ $$aJonnagaddala, Jitendra$$b8
000286376 7001_ $$aHawkins, Nicholas$$b9
000286376 7001_ $$aWard, Robyn L$$b10
000286376 7001_ $$0P:(DE-He78)1e33961c8780aca9b76d776d1fdc1ebb$$aBrinker, Titus$$b11$$udkfz
000286376 7001_ $$aSaldanha, Oliver Lester$$b12
000286376 7001_ $$aKe, Jia$$b13
000286376 7001_ $$aMüller, Wolfram$$b14
000286376 7001_ $$aGrabsch, Heike I$$b15
000286376 7001_ $$aQuirke, Philip$$b16
000286376 7001_ $$aTruhn, Daniel$$b17
000286376 7001_ $$aKather, Jakob Nikolas$$b18
000286376 773__ $$0PERI:(DE-600)2972368-1$$a10.1016/S2589-7500(23)00208-X$$gVol. 6, no. 1, p. e33 - e43$$n1$$pe33 - e43$$tThe lancet / Digital health$$v6$$x2589-7500$$y2024
000286376 909CO $$ooai:inrepo02.dkfz.de:286376$$pVDB
000286376 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)6c5d058b7552d071a7fa4c5e943fff0f$$aDeutsches Krebsforschungszentrum$$b1$$kDKFZ
000286376 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)90d5535ff896e70eed81f4a4f6f22ae2$$aDeutsches Krebsforschungszentrum$$b2$$kDKFZ
000286376 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)b9e439a1aa1244925f92d547c0919349$$aDeutsches Krebsforschungszentrum$$b4$$kDKFZ
000286376 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)1e33961c8780aca9b76d776d1fdc1ebb$$aDeutsches Krebsforschungszentrum$$b11$$kDKFZ
000286376 9131_ $$0G:(DE-HGF)POF4-313$$1G:(DE-HGF)POF4-310$$2G:(DE-HGF)POF4-300$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vKrebsrisikofaktoren und Prävention$$x0
000286376 9141_ $$y2023
000286376 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bLANCET DIGIT HEALTH : 2022$$d2023-08-23
000286376 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-08-23
000286376 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-08-23
000286376 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2023-05-02T08:53:13Z
000286376 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2023-05-02T08:53:13Z
000286376 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Anonymous peer review$$d2023-05-02T08:53:13Z
000286376 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-08-23
000286376 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-08-23
000286376 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-08-23
000286376 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-08-23
000286376 915__ $$0StatID:(DE-HGF)1110$$2StatID$$aDBCoverage$$bCurrent Contents - Clinical Medicine$$d2023-08-23
000286376 915__ $$0StatID:(DE-HGF)9930$$2StatID$$aIF >= 30$$bLANCET DIGIT HEALTH : 2022$$d2023-08-23
000286376 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2023-08-23
000286376 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2023-08-23
000286376 9201_ $$0I:(DE-He78)C120-20160331$$kC120$$lPräventive Onkologie$$x0
000286376 9201_ $$0I:(DE-He78)C070-20160331$$kC070$$lC070 Klinische Epidemiologie und Alternf.$$x1
000286376 9201_ $$0I:(DE-He78)HD01-20160331$$kHD01$$lDKTK HD zentral$$x2
000286376 9201_ $$0I:(DE-He78)C140-20160331$$kC140$$lNWG Digitale Biomarker in der Onkologie$$x3
000286376 980__ $$ajournal
000286376 980__ $$aVDB
000286376 980__ $$aI:(DE-He78)C120-20160331
000286376 980__ $$aI:(DE-He78)C070-20160331
000286376 980__ $$aI:(DE-He78)HD01-20160331
000286376 980__ $$aI:(DE-He78)C140-20160331
000286376 980__ $$aUNRESTRICTED