001     286383
005     20240229155125.0
024 7 _ |a 10.7554/eLife.87894
|2 doi
024 7 _ |a pmid:38127078
|2 pmid
024 7 _ |a altmetric:153220010
|2 altmetric
037 _ _ |a DKFZ-2023-02786
041 _ _ |a English
082 _ _ |a 600
100 1 _ |a Bull, Caroline
|0 0000-0002-2176-5120
|b 0
245 _ _ |a Identifying metabolic features of colorectal cancer liability using Mendelian randomization.
260 _ _ |a Cambridge
|c 2023
|b eLife Sciences Publications
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1703245028_28909
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Recognizing the early signs of cancer risk is vital for informing prevention, early detection, and survival.To investigate whether changes in circulating metabolites characterize the early stages of colorectal cancer (CRC) development, we examined the associations between a genetic risk score (GRS) associated with CRC liability (72 single-nucleotide polymorphisms) and 231 circulating metabolites measured by nuclear magnetic resonance spectroscopy in the Avon Longitudinal Study of Parents and Children (N = 6221). Linear regression models were applied to examine the associations between genetic liability to CRC and circulating metabolites measured in the same individuals at age 8 y, 16 y, 18 y, and 25 y.The GRS for CRC was associated with up to 28% of the circulating metabolites at FDR-P < 0.05 across all time points, particularly with higher fatty acids and very-low- and low-density lipoprotein subclass lipids. Two-sample reverse Mendelian randomization (MR) analyses investigating CRC liability (52,775 cases, 45,940 controls) and metabolites measured in a random subset of UK Biobank participants (N = 118,466, median age 58 y) revealed broadly consistent effect estimates with the GRS analysis. In conventional (forward) MR analyses, genetically predicted polyunsaturated fatty acid concentrations were most strongly associated with higher CRC risk.These analyses suggest that higher genetic liability to CRC can cause early alterations in systemic metabolism and suggest that fatty acids may play an important role in CRC development.This work was supported by the Elizabeth Blackwell Institute for Health Research, University of Bristol, the Wellcome Trust, the Medical Research Council, Diabetes UK, the University of Bristol NIHR Biomedical Research Centre, and Cancer Research UK. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. This work used the computational facilities of the Advanced Computing Research Centre, University of Bristol - http://www.bristol.ac.uk/acrc/.
536 _ _ |a 313 - Krebsrisikofaktoren und Prävention (POF4-313)
|0 G:(DE-HGF)POF4-313
|c POF4-313
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
650 _ 7 |a Mendelian randomization
|2 Other
650 _ 7 |a cancer biology
|2 Other
650 _ 7 |a colorectal cancer
|2 Other
650 _ 7 |a epidemiology
|2 Other
650 _ 7 |a global health
|2 Other
650 _ 7 |a human
|2 Other
650 _ 7 |a metabolomics
|2 Other
650 _ 7 |a obesity
|2 Other
700 1 _ |a Hazelwood, Emma
|0 0000-0002-4888-6037
|b 1
700 1 _ |a Bell, Joshua A
|b 2
700 1 _ |a Tan, Vanessa
|0 0000-0001-7938-127X
|b 3
700 1 _ |a Constantinescu, Andrei-Emil
|b 4
700 1 _ |a Borges, Carolina
|b 5
700 1 _ |a Legge, Danny
|0 0000-0002-3897-5861
|b 6
700 1 _ |a Burrows, Kimberley
|b 7
700 1 _ |a Huyghe, Jeroen R
|0 0000-0001-6027-9806
|b 8
700 1 _ |a Brenner, Hermann
|0 P:(DE-He78)90d5535ff896e70eed81f4a4f6f22ae2
|b 9
|u dkfz
700 1 _ |a Castellvi-Bel, Sergi
|b 10
700 1 _ |a Chan, Andrew T
|b 11
700 1 _ |a Kweon, Sun-Seog
|b 12
700 1 _ |a Le Marchand, Loic
|b 13
700 1 _ |a Li, Li
|b 14
700 1 _ |a Cheng, Iona
|b 15
700 1 _ |a Pai, Rish K
|b 16
700 1 _ |a Figueiredo, Jane C
|b 17
700 1 _ |a Murphy, Neil
|b 18
700 1 _ |a Gunter, Marc J
|b 19
700 1 _ |a Timpson, Nicholas J
|b 20
700 1 _ |a Vincent, Emma E
|0 0000-0002-8917-7384
|b 21
773 _ _ |a 10.7554/eLife.87894
|g Vol. 12, p. RP87894
|0 PERI:(DE-600)2687154-3
|p RP87894
|t eLife
|v 12
|y 2023
|x 2050-084X
909 C O |o oai:inrepo02.dkfz.de:286383
|p VDB
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 9
|6 P:(DE-He78)90d5535ff896e70eed81f4a4f6f22ae2
913 1 _ |a DE-HGF
|b Gesundheit
|l Krebsforschung
|1 G:(DE-HGF)POF4-310
|0 G:(DE-HGF)POF4-313
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Krebsrisikofaktoren und Prävention
|x 0
914 1 _ |y 2023
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ELIFE : 2022
|d 2023-08-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-08-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-08-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0320
|2 StatID
|b PubMed Central
|d 2023-08-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2022-09-23T12:20:44Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2022-09-23T12:20:44Z
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Anonymous peer review
|d 2022-09-23T12:20:44Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2023-08-22
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2023-08-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-08-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2023-08-22
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2023-08-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-08-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2023-08-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1040
|2 StatID
|b Zoological Record
|d 2023-08-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2023-08-22
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b ELIFE : 2022
|d 2023-08-22
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2023-08-22
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2023-08-22
920 1 _ |0 I:(DE-He78)C070-20160331
|k C070
|l C070 Klinische Epidemiologie und Alternf.
|x 0
920 1 _ |0 I:(DE-He78)C120-20160331
|k C120
|l Präventive Onkologie
|x 1
920 1 _ |0 I:(DE-He78)HD01-20160331
|k HD01
|l DKTK HD zentral
|x 2
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)C070-20160331
980 _ _ |a I:(DE-He78)C120-20160331
980 _ _ |a I:(DE-He78)HD01-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21