001     286388
005     20240304144739.0
024 7 _ |a 10.1007/s00109-023-02406-4
|2 doi
024 7 _ |a pmid:38127137
|2 pmid
024 7 _ |a 0023-2173
|2 ISSN
024 7 _ |a 0941-0198
|2 ISSN
024 7 _ |a 0946-2716
|2 ISSN
024 7 _ |a 1432-1440
|2 ISSN
024 7 _ |a altmetric:157696577
|2 altmetric
037 _ _ |a DKFZ-2023-02791
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a Kommoss, Katharina
|0 P:(DE-He78)47a1ded1dddd8c84bd3a6e3f6e1e8769
|b 0
|e First author
|u dkfz
245 _ _ |a A simple tool for evaluation of inflammation in psoriasis: Neutrophil-to-lymphocyte and platelet-to-lymphocyte ratio as markers in psoriasis patients and related murine models of psoriasis-like skin disease.
260 _ _ |a New York, NY
|c 2024
|b Springer
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1709560011_15776
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a #EA:F180#LA:F180# / 2024 Feb;102(2):247-255
520 _ _ |a Objective parameters to quantify psoriatic inflammation are needed for interdisciplinary patient care, as well as preclinical experimental models. This study evaluates neutrophil-to-lymphocyte ratio (NLR) and platelet-to-lymphocyte ratio (PLR) in psoriasis patients and five murine models of psoriasis-like skin disease based on topical imiquimod application and overexpression of IL-17A under different promotors. We performed a single-center prospective observational study in a German population, investigating psoriasis patients prior to, 4 weeks, and 16 weeks post begin of systemic anti-inflammatory therapy. Psoriasis area and severity index (PASI), blood count, and C-reactive protein (CRP) levels were attained at each timepoint. Additionally, five murine models of psoriasis-like skin disease involving five distinct experimental procedures differing in time of disease-onset and severity were investigated regarding PLR and NLR. Of 43 recruited psoriasis patients, 34 patients were followed up to 16 weeks. The cohort was 69.77% male, showing a median age of 32.0 years (range 19.0-67.0; IQR 26). The median PASI decreased from 16.35 (8.0-50.0; 10.20) to 1.6 (0-10.3; 2.56) after 16 weeks of systemic therapy. Spearman's correlation showed statistically significant positive correlation for NLR with PASI (rs = 0.27, p = 0.006), however not for PLR. NLR, but not PLR, was significantly associated with PASI in a multiple linear regression analysis including age, sex, psoriasis arthritis, and smoking. In the murine models of psoriasis-like skin disease, both NLR and PLR were significantly increased in the acute-severe models compared to controls (p < 0.001, p = 0.005, and p = 0.02, respectively), demonstrating gradually less increased values from severe-acute to mild-late-onset psoriatic phenotype. NLR was significantly associated with PASI in psoriatic patients as well as psoriatic phenotype in different murine psoriasis models. Our data warrants investigation of NLR in psoriasis patients and preclinical psoriasis models as an objective biomarker of psoriatic skin inflammation. KEY MESSAGES : NLR, but not PLR, showed a statistically significant positive correlation with Psoriasis Area and Severity Index (PASI) in our human psoriasis cohort. Both NLR and PLR were significantly increased in murine psoriasis models compared to matched controls, with gradually less increased values from severe-acute to mild-late-onset psoriatic phenotype. NLR may represent an easily available, cheap, and objective parameter to monitor psoriatic inflammation in both clinical patient routine, as well as preclinical experimental murine models.
536 _ _ |a 316 - Infektionen, Entzündung und Krebs (POF4-316)
|0 G:(DE-HGF)POF4-316
|c POF4-316
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
650 _ 7 |a Interleukin-17A
|2 Other
650 _ 7 |a Neutrophil-to-lymphocyte ratio
|2 Other
650 _ 7 |a Platelet-to-lymphocyte ratio
|2 Other
650 _ 7 |a Psoriasis
|2 Other
650 _ 7 |a Psoriasis-comorbidities
|2 Other
700 1 _ |a Bieler, Tabea
|0 P:(DE-He78)11cce3d1c1b90cc2db800df4d9a07ad4
|b 1
|u dkfz
700 1 _ |a Ringen, Julia
|b 2
700 1 _ |a Lehmann, Annika
|b 3
700 1 _ |a Mihalceanu, Silvia
|b 4
700 1 _ |a Hobohm, Lukas
|b 5
700 1 _ |a Keller, Karsten
|b 6
700 1 _ |a Brand, Anna
|b 7
700 1 _ |a Fischer, Berenice
|b 8
700 1 _ |a Kramer, Daniela
|b 9
700 1 _ |a Wild, Johannes
|b 10
700 1 _ |a Waisman, Ari
|b 11
700 1 _ |a Enk, Alexander
|b 12
700 1 _ |a Schäkel, Knut
|b 13
700 1 _ |a Heikenwälder, Mathias
|0 P:(DE-He78)66ed2d4ec9bc11d29b87ac006adf85e5
|b 14
|e Last author
|u dkfz
700 1 _ |a Karbach, Susanne
|b 15
773 _ _ |a 10.1007/s00109-023-02406-4
|0 PERI:(DE-600)1462132-0
|n 2
|p 247-255
|t Journal of molecular medicine
|v 102
|y 2024
|x 0023-2173
909 C O |p VDB
|o oai:inrepo02.dkfz.de:286388
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 0
|6 P:(DE-He78)47a1ded1dddd8c84bd3a6e3f6e1e8769
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 1
|6 P:(DE-He78)11cce3d1c1b90cc2db800df4d9a07ad4
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 14
|6 P:(DE-He78)66ed2d4ec9bc11d29b87ac006adf85e5
913 1 _ |a DE-HGF
|b Gesundheit
|l Krebsforschung
|1 G:(DE-HGF)POF4-310
|0 G:(DE-HGF)POF4-316
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Infektionen, Entzündung und Krebs
|x 0
914 1 _ |y 2023
915 _ _ |a DEAL Springer
|0 StatID:(DE-HGF)3002
|2 StatID
|d 2023-10-21
|w ger
915 _ _ |a DEAL Springer
|0 StatID:(DE-HGF)3002
|2 StatID
|d 2023-10-21
|w ger
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J MOL MED : 2022
|d 2023-10-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-10-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-10-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2023-10-21
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2023-10-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-10-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2023-10-21
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2023-10-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-10-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2023-10-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2023-10-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2023-10-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1110
|2 StatID
|b Current Contents - Clinical Medicine
|d 2023-10-21
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2023-10-21
920 2 _ |0 I:(DE-He78)F180-20160331
|k F180
|l Chronische Entzündung und Krebs
|x 0
920 1 _ |0 I:(DE-He78)F180-20160331
|k F180
|l Chronische Entzündung und Krebs
|x 0
920 0 _ |0 I:(DE-He78)F180-20160331
|k F180
|l Chronische Entzündung und Krebs
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)F180-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21