001     286647
005     20240610104626.0
024 7 _ |a 10.1097/RLI.0000000000001056
|2 doi
024 7 _ |a pmid:38157433
|2 pmid
024 7 _ |a 0020-9996
|2 ISSN
024 7 _ |a 1536-0210
|2 ISSN
024 7 _ |a altmetric:157963521
|2 altmetric
037 _ _ |a DKFZ-2024-00015
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a Tenbergen, Carlijn J A
|b 0
245 _ _ |a The Potential of Iron Oxide Nanoparticle-Enhanced MRI at 7 T Compared With 3 T for Detecting Small Suspicious Lymph Nodes in Patients With Prostate Cancer.
260 _ _ |a [Erscheinungsort nicht ermittelbar]
|c 2024
|b Ovid
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1718009142_29044
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a 2024 Jul 1;59(7):519-525
520 _ _ |a Accurate detection of lymph node (LN) metastases in prostate cancer (PCa) is a challenging but crucial step for disease staging. Ultrasmall superparamagnetic iron oxide (USPIO)-enhanced magnetic resonance imaging (MRI) enables distinction between healthy LNs and nodes suspicious for harboring metastases. When combined with MRI at an ultra-high magnetic field, an unprecedented spatial resolution can be exploited to visualize these LNs.The aim of this study was to explore USPIO-enhanced MRI at 7 T in comparison to 3 T for the detection of small suspicious LNs in the same cohort of patients with PCa.Twenty PCa patients with high-risk primary or recurrent disease were referred to our hospital for an investigational USPIO-enhanced 3 T MRI examination with ferumoxtran-10. With consent, they underwent a 7 T MRI on the same day. Three-dimensional anatomical and T2*-weighted images of both examinations were evaluated blinded, with an interval, by 2 readers who annotated LNs suspicious for metastases. Number, size, and level of suspicion (LoS) of LNs were paired within patients and compared between field strengths.At 7 T, both readers annotated significantly more LNs compared with 3 T (474 and 284 vs 344 and 162), with 116 suspicious LNs on 7 T (range, 1-34 per patient) and 79 suspicious LNs on 3 T (range, 1-14 per patient) in 17 patients. For suspicious LNs, the median short axis diameter was 2.6 mm on 7 T (1.3-9.5 mm) and 2.8 mm for 3 T (1.7-10.4 mm, P = 0.05), with large overlap in short axis of annotated LNs between LoS groups. At 7 T, significantly more suspicious LNs had a short axis <2.5 mm compared with 3 T (44% vs 27%). Magnetic resonance imaging at 7 T provided better image quality and structure delineation and a higher LoS score for suspicious nodes.In the same cohort of patients with PCa, more and more small LNs were detected on 7 T USPIO-enhanced MRI compared with 3 T MRI. Suspicious LNs are generally very small, and increased nodal size was not a good indication of suspicion for the presence of metastases. The high spatial resolution of USPIO-enhanced MRI at 7 T improves structure delineation and the visibility of very small suspicious LNs, potentially expanding the in vivo detection limits of pelvic LN metastases in PCa patients.
536 _ _ |a 315 - Bildgebung und Radioonkologie (POF4-315)
|0 G:(DE-HGF)POF4-315
|c POF4-315
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
700 1 _ |a Fortuin, Ansje S
|b 1
700 1 _ |a van Asten, Jack J A
|b 2
700 1 _ |a Veltien, Andor
|b 3
700 1 _ |a Philips, Bart W J
|b 4
700 1 _ |a Hambrock, Thomas
|b 5
700 1 _ |a Orzada, Stephan
|0 P:(DE-He78)7985b432d853ab8929db0f1cb121667f
|b 6
|u dkfz
700 1 _ |a Quick, Harald H
|b 7
700 1 _ |a Barentsz, Jelle O
|b 8
700 1 _ |a Maas, Marnix C
|b 9
700 1 _ |a Scheenen, Tom W J
|b 10
773 _ _ |a 10.1097/RLI.0000000000001056
|0 PERI:(DE-600)2041543-6
|n 7
|p 519-525
|t Investigative radiology
|v 59
|y 2024
|x 0020-9996
909 C O |p VDB
|o oai:inrepo02.dkfz.de:286647
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 6
|6 P:(DE-He78)7985b432d853ab8929db0f1cb121667f
913 1 _ |a DE-HGF
|b Gesundheit
|l Krebsforschung
|1 G:(DE-HGF)POF4-310
|0 G:(DE-HGF)POF4-315
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Bildgebung und Radioonkologie
|x 0
914 1 _ |y 2023
915 _ _ |a Allianz-Lizenz
|0 StatID:(DE-HGF)0410
|2 StatID
|d 2023-10-24
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-10-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-10-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2023-10-24
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2023-10-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-10-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2023-10-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2023-10-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2023-10-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1110
|2 StatID
|b Current Contents - Clinical Medicine
|d 2023-10-24
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b INVEST RADIOL : 2022
|d 2023-10-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-10-24
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b INVEST RADIOL : 2022
|d 2023-10-24
920 1 _ |0 I:(DE-He78)E020-20160331
|k E020
|l E020 Med. Physik in der Radiologie
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)E020-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21