000286649 001__ 286649
000286649 005__ 20251027133849.0
000286649 0247_ $$2doi$$a10.1088/1361-6560/ad120f
000286649 0247_ $$2pmid$$apmid:38048635
000286649 0247_ $$2ISSN$$a0031-9155
000286649 0247_ $$2ISSN$$a1361-6560
000286649 037__ $$aDKFZ-2024-00017
000286649 041__ $$aEnglish
000286649 082__ $$a530
000286649 1001_ $$aHan, Yang$$b0
000286649 245__ $$aCombined BNCT-CIRT treatment planning for glioblastoma using the effect-based optimization.
000286649 260__ $$aBristol$$bIOP Publ.$$c2024
000286649 3367_ $$2DRIVER$$aarticle
000286649 3367_ $$2DataCite$$aOutput Types/Journal article
000286649 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1704291114_22363
000286649 3367_ $$2BibTeX$$aARTICLE
000286649 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000286649 3367_ $$00$$2EndNote$$aJournal Article
000286649 520__ $$aObjective. Boron neutron capture therapy (BNCT) and carbon ion radiotherapy (CIRT) are emerging treatment modalities for glioblastoma. In this study, we investigated the methodology and feasibility to combine BNCT and CIRT treatments. The combined treatment plan illustrated how the synergistic utilization of BNCT's biological targeting and CIRT's intensity modulation capabilities could lead to optimized treatment outcomes.Approach. The Monte Carlo toolkit, TOPAS, was employed to calculate the dose distribution for BNCT, while matRad was utilized for the optimization of CIRT. The biological effect-based approach, instead of the dose-based approach, was adopted to develop the combined BNCT-CIRT treatment plans for six patients diagnosed with glioblastoma, considering the different radiosensitivity and fraction. Five optional combined treatment plans with specific BNCT effect proportions for each patient were evaluated to identify the optimal treatment that minimizes damage on normal tissue.Main results. Individual BNCT exhibits a significant effect gradient along with the beam direction in the large tumor, while combined BNCT-CIRT treatments can achieve uniform effect delivery within the clinical target volume (CTV) through the effect filling with reversed gradient by the CIRT part. In addition, the increasing BNCT effect proportion in combined treatments can reduce damage in the normal brain tissue near the CTV. Besides, the combined treatments effectively minimize damage to the skin compared to individual BNCT treatments.Significance. The initial endeavor to combine BNCT and CIRT treatment plans is achieved by the effect-based optimization. The observed advantages of the combined treatment suggest its potential applicability for tumors characterized by pleomorphic, infiltrative, radioresistant and voluminous features.
000286649 536__ $$0G:(DE-HGF)POF4-315$$a315 - Bildgebung und Radioonkologie (POF4-315)$$cPOF4-315$$fPOF IV$$x0
000286649 588__ $$aDataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
000286649 650_7 $$2Other$$aboron neutron capture therapy
000286649 650_7 $$2Other$$acarbon ion radiotherapy
000286649 650_7 $$2Other$$acombined treatment
000286649 650_7 $$2Other$$aeffect-based optimization
000286649 650_7 $$2Other$$aglioblastoma
000286649 650_2 $$2MeSH$$aHumans
000286649 650_2 $$2MeSH$$aGlioblastoma: radiotherapy
000286649 650_2 $$2MeSH$$aBoron Neutron Capture Therapy: methods
000286649 650_2 $$2MeSH$$aBrain
000286649 650_2 $$2MeSH$$aRadiotherapy Dosage
000286649 650_2 $$2MeSH$$aHeavy Ion Radiotherapy
000286649 7001_ $$00000-0002-6332-6193$$aGeng, Changran$$b1
000286649 7001_ $$00000-0002-1376-3686$$aAltieri, Saverio$$b2
000286649 7001_ $$00000-0003-0452-2255$$aBortolussi, Silva$$b3
000286649 7001_ $$aLiu, Yuanhao$$b4
000286649 7001_ $$0P:(DE-He78)dfd5aaf608015baaaed0a15b473f1336$$aWahl, Niklas$$b5$$udkfz
000286649 7001_ $$00000-0003-3308-0468$$aTang, Xiaobin$$b6
000286649 773__ $$0PERI:(DE-600)1473501-5$$a10.1088/1361-6560/ad120f$$gVol. 69, no. 1, p. 015024 -$$n1$$p015024$$tPhysics in medicine and biology$$v69$$x0031-9155$$y2024
000286649 8564_ $$uhttps://inrepo02.dkfz.de/record/286649/files/Han_2024_Phys._Med._Biol._69_015024.pdf
000286649 8564_ $$uhttps://inrepo02.dkfz.de/record/286649/files/Han_2024_Phys._Med._Biol._69_015024.pdf?subformat=pdfa$$xpdfa
000286649 909CO $$ooai:inrepo02.dkfz.de:286649$$pVDB
000286649 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)dfd5aaf608015baaaed0a15b473f1336$$aDeutsches Krebsforschungszentrum$$b5$$kDKFZ
000286649 9131_ $$0G:(DE-HGF)POF4-315$$1G:(DE-HGF)POF4-310$$2G:(DE-HGF)POF4-300$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vBildgebung und Radioonkologie$$x0
000286649 9141_ $$y2024
000286649 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium$$d2023-08-26$$wger
000286649 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-08-26
000286649 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-08-26
000286649 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2023-08-26
000286649 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-08-26
000286649 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-08-26
000286649 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2023-08-26
000286649 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2023-08-26
000286649 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-08-26
000286649 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPHYS MED BIOL : 2022$$d2023-08-26
000286649 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-08-26
000286649 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2023-08-26
000286649 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2023-08-26
000286649 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2023-08-26
000286649 9201_ $$0I:(DE-He78)E040-20160331$$kE040$$lE040 Med. Physik in der Strahlentherapie$$x0
000286649 980__ $$ajournal
000286649 980__ $$aVDB
000286649 980__ $$aI:(DE-He78)E040-20160331
000286649 980__ $$aUNRESTRICTED