000286665 001__ 286665
000286665 005__ 20250415112708.0
000286665 0247_ $$2doi$$a10.1038/s41598-023-50487-5
000286665 0247_ $$2pmid$$apmid:38167443
000286665 037__ $$aDKFZ-2024-00029
000286665 041__ $$aEnglish
000286665 082__ $$a600
000286665 1001_ $$0P:(DE-He78)fb68a9386399d72d84f7f34cfc6048b4$$aKatzke, Verena$$b0$$eFirst author$$udkfz
000286665 245__ $$aNumber of medically prescribed pharmaceutical agents as predictor of mortality risk: a longitudinal, time-variable analysis in the EPIC-Heidelberg cohort.
000286665 260__ $$a[London]$$bMacmillan Publishers Limited, part of Springer Nature$$c2024
000286665 3367_ $$2DRIVER$$aarticle
000286665 3367_ $$2DataCite$$aOutput Types/Journal article
000286665 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1704372753_7492
000286665 3367_ $$2BibTeX$$aARTICLE
000286665 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000286665 3367_ $$00$$2EndNote$$aJournal Article
000286665 500__ $$a#EA:C020#LA:C020#
000286665 520__ $$aThe number of prescribed medications might be used as proxy indicator for general health status, in models to predict mortality risk. To estimate the time-varying association between active pharmaceutical ingredient (API) count and all-cause mortality, we analyzed data from a population cohort in Heidelberg (Germany), including 25,546 participants with information on medication use collected at 3-yearly intervals from baseline recruitment (1994-1998) until end of 2014. A total of 4548 deaths were recorded until May 2019. Time-dependent modeling was used to estimate hazard ratios (HR) and their 95% confidence intervals (CI) for all-cause mortality in relation to number of APIs used, within three strata of age (≤ 60, > 60 to ≤ 70 and > 70 years) and adjusting for lifestyle-related risk factors. For participants reporting commonly used APIs only (i.e., API types accounting for up to 80% of medication time in the population) total API counts showed no association with mortality risk within any age stratum. However, when at least one of the APIs was less common, the total API count showed a strong relationship with all-cause mortality especially up to age ≤ 60, with HR up to 3.70 (95% CI 2.30-5.94) with 5 or 6 medications and 8.19 (5.61-11.97) for 7 or more APIs (versus none). Between > 60 and 70 years of age this risk association was weaker, with HR up to 3.96 (3.14-4.98) for 7 or more APIs, and above 70 years it was weakened further (HR up to 1.54 (1.34-1.79)). Multiple API-use may predict mortality risk in middle-aged and women and men ≤ 70 years, but only if it includes at least one less frequently used API type. With advancing age, and multiple medication becomes increasingly prevalent, the association of API count with risk of death progressively attenuates, suggesting an increasing complexity with age of underlying mortality determinants.
000286665 536__ $$0G:(DE-HGF)POF4-313$$a313 - Krebsrisikofaktoren und Prävention (POF4-313)$$cPOF4-313$$fPOF IV$$x0
000286665 588__ $$aDataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
000286665 7001_ $$0P:(DE-He78)0b48ce513fe49013263657450a12f870$$aBajracharya, Rashmita$$b1$$udkfz
000286665 7001_ $$aNasser, Mohamad I$$b2
000286665 7001_ $$0P:(DE-He78)c67a12496b8aac150c0eef888d808d46$$aSchöttker, Ben$$b3$$udkfz
000286665 7001_ $$0P:(DE-He78)4b2dc91c9d1ac33a1c0e0777d0c1697a$$aKaaks, Rudolf$$b4$$eLast author$$udkfz
000286665 773__ $$0PERI:(DE-600)2615211-3$$a10.1038/s41598-023-50487-5$$gVol. 14, no. 1, p. 106$$n1$$p106$$tScientific reports$$v14$$x2045-2322$$y2024
000286665 8564_ $$uhttps://inrepo02.dkfz.de/record/286665/files/s41598-023-50487-5.pdf
000286665 8564_ $$uhttps://inrepo02.dkfz.de/record/286665/files/s41598-023-50487-5.pdf?subformat=pdfa$$xpdfa
000286665 8767_ $$8SN-2024-00420-b$$92024-05-28$$d2025-04-14$$eAPC$$jZahlung erfolgt
000286665 909CO $$ooai:inrepo02.dkfz.de:286665$$pVDB$$pOpenAPC$$popenCost
000286665 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)fb68a9386399d72d84f7f34cfc6048b4$$aDeutsches Krebsforschungszentrum$$b0$$kDKFZ
000286665 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)0b48ce513fe49013263657450a12f870$$aDeutsches Krebsforschungszentrum$$b1$$kDKFZ
000286665 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)c67a12496b8aac150c0eef888d808d46$$aDeutsches Krebsforschungszentrum$$b3$$kDKFZ
000286665 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)4b2dc91c9d1ac33a1c0e0777d0c1697a$$aDeutsches Krebsforschungszentrum$$b4$$kDKFZ
000286665 9131_ $$0G:(DE-HGF)POF4-313$$1G:(DE-HGF)POF4-310$$2G:(DE-HGF)POF4-300$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vKrebsrisikofaktoren und Prävention$$x0
000286665 9141_ $$y2024
000286665 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bSCI REP-UK : 2022$$d2023-08-24
000286665 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-08-24
000286665 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-08-24
000286665 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central$$d2023-08-24
000286665 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2023-04-12T15:11:06Z
000286665 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2023-04-12T15:11:06Z
000286665 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Anonymous peer review$$d2023-04-12T15:11:06Z
000286665 915__ $$0LIC:(DE-HGF)CCBYNV$$2V:(DE-HGF)$$aCreative Commons Attribution CC BY (No Version)$$bDOAJ$$d2023-04-12T15:11:06Z
000286665 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2023-08-24
000286665 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2023-08-24
000286665 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-08-24
000286665 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2023-08-24
000286665 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-08-24
000286665 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-08-24
000286665 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2023-08-24
000286665 915__ $$0StatID:(DE-HGF)1040$$2StatID$$aDBCoverage$$bZoological Record$$d2023-08-24
000286665 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-08-24
000286665 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2023-08-24
000286665 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2023-08-24
000286665 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2023-08-24
000286665 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2023-08-24
000286665 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set
000286665 915pc $$0PC:(DE-HGF)0001$$2APC$$aLocal Funding
000286665 915pc $$0PC:(DE-HGF)0002$$2APC$$aDFG OA Publikationskosten
000286665 915pc $$0PC:(DE-HGF)0003$$2APC$$aDOAJ Journal
000286665 9202_ $$0I:(DE-He78)C020-20160331$$kC020$$lC020 Epidemiologie von Krebs$$x0
000286665 9200_ $$0I:(DE-He78)C020-20160331$$kC020$$lC020 Epidemiologie von Krebs$$x0
000286665 9201_ $$0I:(DE-He78)C020-20160331$$kC020$$lC020 Epidemiologie von Krebs$$x0
000286665 9201_ $$0I:(DE-He78)C070-20160331$$kC070$$lC070 Klinische Epidemiologie und Alternf.$$x1
000286665 980__ $$ajournal
000286665 980__ $$aVDB
000286665 980__ $$aI:(DE-He78)C020-20160331
000286665 980__ $$aI:(DE-He78)C070-20160331
000286665 980__ $$aUNRESTRICTED
000286665 980__ $$aAPC