Home > Publications database > Number of medically prescribed pharmaceutical agents as predictor of mortality risk: a longitudinal, time-variable analysis in the EPIC-Heidelberg cohort. > print |
001 | 286665 | ||
005 | 20250415112708.0 | ||
024 | 7 | _ | |a 10.1038/s41598-023-50487-5 |2 doi |
024 | 7 | _ | |a pmid:38167443 |2 pmid |
037 | _ | _ | |a DKFZ-2024-00029 |
041 | _ | _ | |a English |
082 | _ | _ | |a 600 |
100 | 1 | _ | |a Katzke, Verena |0 P:(DE-He78)fb68a9386399d72d84f7f34cfc6048b4 |b 0 |e First author |u dkfz |
245 | _ | _ | |a Number of medically prescribed pharmaceutical agents as predictor of mortality risk: a longitudinal, time-variable analysis in the EPIC-Heidelberg cohort. |
260 | _ | _ | |a [London] |c 2024 |b Macmillan Publishers Limited, part of Springer Nature |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1704372753_7492 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
500 | _ | _ | |a #EA:C020#LA:C020# |
520 | _ | _ | |a The number of prescribed medications might be used as proxy indicator for general health status, in models to predict mortality risk. To estimate the time-varying association between active pharmaceutical ingredient (API) count and all-cause mortality, we analyzed data from a population cohort in Heidelberg (Germany), including 25,546 participants with information on medication use collected at 3-yearly intervals from baseline recruitment (1994-1998) until end of 2014. A total of 4548 deaths were recorded until May 2019. Time-dependent modeling was used to estimate hazard ratios (HR) and their 95% confidence intervals (CI) for all-cause mortality in relation to number of APIs used, within three strata of age (≤ 60, > 60 to ≤ 70 and > 70 years) and adjusting for lifestyle-related risk factors. For participants reporting commonly used APIs only (i.e., API types accounting for up to 80% of medication time in the population) total API counts showed no association with mortality risk within any age stratum. However, when at least one of the APIs was less common, the total API count showed a strong relationship with all-cause mortality especially up to age ≤ 60, with HR up to 3.70 (95% CI 2.30-5.94) with 5 or 6 medications and 8.19 (5.61-11.97) for 7 or more APIs (versus none). Between > 60 and 70 years of age this risk association was weaker, with HR up to 3.96 (3.14-4.98) for 7 or more APIs, and above 70 years it was weakened further (HR up to 1.54 (1.34-1.79)). Multiple API-use may predict mortality risk in middle-aged and women and men ≤ 70 years, but only if it includes at least one less frequently used API type. With advancing age, and multiple medication becomes increasingly prevalent, the association of API count with risk of death progressively attenuates, suggesting an increasing complexity with age of underlying mortality determinants. |
536 | _ | _ | |a 313 - Krebsrisikofaktoren und Prävention (POF4-313) |0 G:(DE-HGF)POF4-313 |c POF4-313 |f POF IV |x 0 |
588 | _ | _ | |a Dataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de |
700 | 1 | _ | |a Bajracharya, Rashmita |0 P:(DE-He78)0b48ce513fe49013263657450a12f870 |b 1 |u dkfz |
700 | 1 | _ | |a Nasser, Mohamad I |b 2 |
700 | 1 | _ | |a Schöttker, Ben |0 P:(DE-He78)c67a12496b8aac150c0eef888d808d46 |b 3 |u dkfz |
700 | 1 | _ | |a Kaaks, Rudolf |0 P:(DE-He78)4b2dc91c9d1ac33a1c0e0777d0c1697a |b 4 |e Last author |u dkfz |
773 | _ | _ | |a 10.1038/s41598-023-50487-5 |g Vol. 14, no. 1, p. 106 |0 PERI:(DE-600)2615211-3 |n 1 |p 106 |t Scientific reports |v 14 |y 2024 |x 2045-2322 |
856 | 4 | _ | |u https://inrepo02.dkfz.de/record/286665/files/s41598-023-50487-5.pdf |
856 | 4 | _ | |u https://inrepo02.dkfz.de/record/286665/files/s41598-023-50487-5.pdf?subformat=pdfa |x pdfa |
909 | C | O | |o oai:inrepo02.dkfz.de:286665 |p VDB |p OpenAPC |p openCost |
910 | 1 | _ | |a Deutsches Krebsforschungszentrum |0 I:(DE-588b)2036810-0 |k DKFZ |b 0 |6 P:(DE-He78)fb68a9386399d72d84f7f34cfc6048b4 |
910 | 1 | _ | |a Deutsches Krebsforschungszentrum |0 I:(DE-588b)2036810-0 |k DKFZ |b 1 |6 P:(DE-He78)0b48ce513fe49013263657450a12f870 |
910 | 1 | _ | |a Deutsches Krebsforschungszentrum |0 I:(DE-588b)2036810-0 |k DKFZ |b 3 |6 P:(DE-He78)c67a12496b8aac150c0eef888d808d46 |
910 | 1 | _ | |a Deutsches Krebsforschungszentrum |0 I:(DE-588b)2036810-0 |k DKFZ |b 4 |6 P:(DE-He78)4b2dc91c9d1ac33a1c0e0777d0c1697a |
913 | 1 | _ | |a DE-HGF |b Gesundheit |l Krebsforschung |1 G:(DE-HGF)POF4-310 |0 G:(DE-HGF)POF4-313 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-300 |4 G:(DE-HGF)POF |v Krebsrisikofaktoren und Prävention |x 0 |
914 | 1 | _ | |y 2024 |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b SCI REP-UK : 2022 |d 2023-08-24 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2023-08-24 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2023-08-24 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0320 |2 StatID |b PubMed Central |d 2023-08-24 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0501 |2 StatID |b DOAJ Seal |d 2023-04-12T15:11:06Z |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0500 |2 StatID |b DOAJ |d 2023-04-12T15:11:06Z |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b DOAJ : Anonymous peer review |d 2023-04-12T15:11:06Z |
915 | _ | _ | |a Creative Commons Attribution CC BY (No Version) |0 LIC:(DE-HGF)CCBYNV |2 V:(DE-HGF) |b DOAJ |d 2023-04-12T15:11:06Z |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |d 2023-08-24 |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |d 2023-08-24 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2023-08-24 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1050 |2 StatID |b BIOSIS Previews |d 2023-08-24 |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2023-08-24 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2023-08-24 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1190 |2 StatID |b Biological Abstracts |d 2023-08-24 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1040 |2 StatID |b Zoological Record |d 2023-08-24 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2023-08-24 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |d 2023-08-24 |
915 | _ | _ | |a IF < 5 |0 StatID:(DE-HGF)9900 |2 StatID |d 2023-08-24 |
915 | _ | _ | |a Article Processing Charges |0 StatID:(DE-HGF)0561 |2 StatID |d 2023-08-24 |
915 | _ | _ | |a Fees |0 StatID:(DE-HGF)0700 |2 StatID |d 2023-08-24 |
915 | p | c | |a APC keys set |2 APC |0 PC:(DE-HGF)0000 |
915 | p | c | |a Local Funding |2 APC |0 PC:(DE-HGF)0001 |
915 | p | c | |a DFG OA Publikationskosten |2 APC |0 PC:(DE-HGF)0002 |
915 | p | c | |a DOAJ Journal |2 APC |0 PC:(DE-HGF)0003 |
920 | 2 | _ | |0 I:(DE-He78)C020-20160331 |k C020 |l C020 Epidemiologie von Krebs |x 0 |
920 | 0 | _ | |0 I:(DE-He78)C020-20160331 |k C020 |l C020 Epidemiologie von Krebs |x 0 |
920 | 1 | _ | |0 I:(DE-He78)C020-20160331 |k C020 |l C020 Epidemiologie von Krebs |x 0 |
920 | 1 | _ | |0 I:(DE-He78)C070-20160331 |k C070 |l C070 Klinische Epidemiologie und Alternf. |x 1 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a I:(DE-He78)C020-20160331 |
980 | _ | _ | |a I:(DE-He78)C070-20160331 |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a APC |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|