001     286750
005     20241120141324.0
024 7 _ |a 10.1186/s12943-023-01919-3
|2 doi
024 7 _ |a pmid:38200602
|2 pmid
024 7 _ |a altmetric:158503400
|2 altmetric
037 _ _ |a DKFZ-2024-00082
041 _ _ |a English
082 _ _ |a 570
100 1 _ |a Schmäche, Tim
|b 0
245 _ _ |a Stratifying esophago-gastric cancer treatment using a patient-derived organoid-based threshold.
260 _ _ |a London
|c 2024
|b Biomed Central
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1705391315_10784
|2 PUB:(DE-HGF)
|x Letter
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a #LA:D120# / Correspondence
520 _ _ |a This study sought to determine the value of patient-derived organoids (PDOs) from esophago-gastric adenocarcinoma (EGC) for response prediction to neoadjuvant chemotherapy (neoCTx).Endoscopic biopsies of patients with locally advanced EGC (n = 120) were taken into culture and PDOs expanded. PDOs' response towards the single substances of the FLOT regimen and the combination treatment were correlated to patients' pathological response using tumor regression grading. A classifier based on FLOT response of PDOs was established in an exploratory cohort (n = 13) and subsequently confirmed in an independent validation cohort (n = 13).EGC PDOs reflected patients' diverse responses to single chemotherapeutics and the combination regimen FLOT. In the exploratory cohort, PDOs response to single 5-FU and FLOT combination treatment correlated with the patients' pathological response (5-FU: Kendall's τ = 0.411, P = 0.001; FLOT: Kendall's τ = 0.694, P = 2.541e-08). For FLOT testing, a high diagnostic precision in receiver operating characteristic (ROC) analysis was reached with an AUCROC of 0.994 (CI 0.980 to 1.000). The discriminative ability of PDO-based FLOT testing allowed the definition of a threshold, which classified in an independent validation cohort FLOT responders from non-responders with high sensitivity (90%), specificity (100%) and accuracy (92%).In vitro drug testing of EGC PDOs has a high predictive accuracy in classifying patients' histological response to neoadjuvant FLOT treatment. Taking into account the high rate of successful PDO expansion from biopsies, the definition of a threshold that allows treatment stratification paves the way for an interventional trial exploring PDO-guided treatment of EGC patients.
536 _ _ |a 314 - Immunologie und Krebs (POF4-314)
|0 G:(DE-HGF)POF4-314
|c POF4-314
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
650 _ 7 |a Gastric cancer
|2 Other
650 _ 7 |a Patient-derived organoids
|2 Other
650 _ 7 |a Personalized medicine
|2 Other
650 _ 7 |a Response prediction
|2 Other
700 1 _ |a Fohgrub, Juliane
|b 1
700 1 _ |a Klimova, Anna
|b 2
700 1 _ |a Laaber, Karin
|0 P:(DE-He78)2edb00bc9fd4fe7c858c2838ce1c0024
|b 3
700 1 _ |a Drukewitz, Stephan
|b 4
700 1 _ |a Merboth, Felix
|b 5
700 1 _ |a Hennig, Alexander
|b 6
700 1 _ |a Seidlitz, Therese
|b 7
700 1 _ |a Herbst-Nowrouzi, Friederike
|0 P:(DE-He78)13dc15153ce40f775007112548f34d79
|b 8
|u dkfz
700 1 _ |a Baenke, Franziska
|b 9
700 1 _ |a Ada, Anne-Marlen
|b 10
700 1 _ |a Groß, Thomas
|0 P:(DE-He78)196be4790a587c09c4e13d8f91adcaa1
|b 11
|u dkfz
700 1 _ |a Wenzel, Carina
|b 12
700 1 _ |a Ball, Claudia
|0 P:(DE-He78)7a10ea1b9b2872da9f375002c44ddfce
|b 13
|u dkfz
700 1 _ |a Praetorius, Christian
|b 14
700 1 _ |a Schmidt, Thomas
|b 15
700 1 _ |a Ringelband-Schilling, Barbara
|b 16
700 1 _ |a Koschny, Ronald
|b 17
700 1 _ |a Stenzinger, Albrecht
|b 18
700 1 _ |a Roeder, Ingo
|b 19
700 1 _ |a Jäger, Dirk
|0 P:(DE-He78)ed0321409c9cde20b380ae663dbcefd1
|b 20
|u dkfz
700 1 _ |a Zeissig, Sebastian
|b 21
700 1 _ |a Welsch, Thilo
|b 22
700 1 _ |a Aust, Daniela
|b 23
700 1 _ |a Glimm, Hanno
|0 P:(DE-He78)157277fe62f07df1732f9d126a51d1b9
|b 24
|u dkfz
700 1 _ |a Folprecht, Gunnar
|b 25
700 1 _ |a Weitz, Jürgen
|b 26
700 1 _ |a Haag, Georg Martin
|0 P:(DE-He78)f54d0426f2215c539d3a7ae1b400b57d
|b 27
|e Last author
|u dkfz
700 1 _ |a Stange, Daniel E
|b 28
773 _ _ |a 10.1186/s12943-023-01919-3
|g Vol. 23, no. 1, p. 10
|0 PERI:(DE-600)2091373-4
|n 1
|p 10
|t Molecular cancer
|v 23
|y 2024
|x 1476-4598
856 4 _ |u https://inrepo02.dkfz.de/record/286750/files/s12943-023-01919-3.pdf
856 4 _ |u https://inrepo02.dkfz.de/record/286750/files/s12943-023-01919-3.pdf?subformat=pdfa
|x pdfa
909 C O |p VDB
|o oai:inrepo02.dkfz.de:286750
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 3
|6 P:(DE-He78)2edb00bc9fd4fe7c858c2838ce1c0024
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 8
|6 P:(DE-He78)13dc15153ce40f775007112548f34d79
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 11
|6 P:(DE-He78)196be4790a587c09c4e13d8f91adcaa1
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 13
|6 P:(DE-He78)7a10ea1b9b2872da9f375002c44ddfce
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 20
|6 P:(DE-He78)ed0321409c9cde20b380ae663dbcefd1
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 24
|6 P:(DE-He78)157277fe62f07df1732f9d126a51d1b9
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 27
|6 P:(DE-He78)f54d0426f2215c539d3a7ae1b400b57d
913 1 _ |a DE-HGF
|b Gesundheit
|l Krebsforschung
|1 G:(DE-HGF)POF4-310
|0 G:(DE-HGF)POF4-314
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Immunologie und Krebs
|x 0
914 1 _ |y 2024
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b MOL CANCER : 2022
|d 2023-10-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-10-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-10-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0320
|2 StatID
|b PubMed Central
|d 2023-10-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2023-05-02T09:06:41Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2023-05-02T09:06:41Z
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Anonymous peer review
|d 2023-05-02T09:06:41Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2023-10-24
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2023-10-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-10-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2023-10-24
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2023-10-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-10-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2023-10-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2023-10-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2023-10-24
915 _ _ |a IF >= 30
|0 StatID:(DE-HGF)9930
|2 StatID
|b MOL CANCER : 2022
|d 2023-10-24
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2023-10-24
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2023-10-24
920 2 _ |0 I:(DE-He78)D120-20160331
|k D120
|l D120 Angewandte Tumor-Immunität
|x 0
920 1 _ |0 I:(DE-He78)B280-20160331
|k B280
|l B280 Translationale funktionelle Krebsgenomik
|x 0
920 1 _ |0 I:(DE-He78)DD01-20160331
|k DD01
|l DKTK Koordinierungsstelle Dresden
|x 1
920 1 _ |0 I:(DE-He78)D120-20160331
|k D120
|l D120 Angewandte Tumor-Immunität
|x 2
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)B280-20160331
980 _ _ |a I:(DE-He78)DD01-20160331
980 _ _ |a I:(DE-He78)D120-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21