000287029 001__ 287029
000287029 005__ 20240229155129.0
000287029 0247_ $$2doi$$a10.21037/tlcr-23-548
000287029 0247_ $$2pmid$$apmid:38205209
000287029 0247_ $$2pmc$$apmc:PMC10775005
000287029 0247_ $$2ISSN$$a2218-6751
000287029 0247_ $$2ISSN$$a2226-4477
000287029 037__ $$aDKFZ-2024-00136
000287029 041__ $$aEnglish
000287029 082__ $$a610
000287029 1001_ $$0P:(DE-HGF)0$$aCortés-Ibáñez, Francisco O$$b0$$eFirst author
000287029 245__ $$aSerum-based biomarkers associated with lung cancer risk and cause-specific mortality in the German randomized Lung Cancer Screening Intervention (LUSI) trial.
000287029 260__ $$a[Erscheinungsort nicht ermittelbar]$$b[Verlag nicht ermittelbar]$$c2023
000287029 3367_ $$2DRIVER$$aarticle
000287029 3367_ $$2DataCite$$aOutput Types/Journal article
000287029 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1705330570_14472
000287029 3367_ $$2BibTeX$$aARTICLE
000287029 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000287029 3367_ $$00$$2EndNote$$aJournal Article
000287029 500__ $$a#EA:C020#LA:C020#
000287029 520__ $$aLung cancer (LC) screening can be optimized using individuals' estimated risks of having a detectable lung tumor, as well as of mortality risk by competing causes, to guide decisions on screening eligibility, ideal screening intervals and stopping ages. Besides age, sex and smoking history, blood-based biomarkers may be used to improve the assessment of LC risk and risk of mortality by competing causes.In the German randomized Lung Screening Intervention Trial (LUSI), we measured growth/differentiation factor-15 (GDF-15), interleukin-6 (IL-6), C-reactive protein (CRP) and N-terminal pro-brain natriuretic protein (NT-proBNP), in blood serum samples collected at start of the trial. Participants in the computed tomography (CT)-screening arm also had a pulmonary function test. Regression models were used to examine these markers as predictors for impaired lung function, LC risk and mortality due to LC or other causes, independently of age, sex and smoking history.Our models showed increases in LC risk among participants with elevated serum levels of GDF-15 [odds ratio (OR)Q4-Q1 =2.47, 95% confidence interval (CI): 1.49-4.26], IL-6 [ORQ4-Q1 =2.36 (1.43-4.00)] and CRP [ORQ4-Q1 =1.81 (1.08-2.75)]. Likewise, proportional hazards models showed increased risks for LC-related mortality, hazard ratio (HR)Q4-Q1 of 4.63 (95% CI: 2.13-10.07) for GDF-15, 3.56 (1.72-7.37) for IL-6 and 2.34 (1.24-4.39) for CRP. All four markers were associated with increased risk of mortality by causes other than LC, with strongest associations for GDF-15 [HRQ4-Q1 =3.04 (2.09-4.43)] and IL-6 [HRQ4-Q1 =2.98 (2.08-4.28)]. Significant associations were also observed between IL-6, CRP, GDF-15 and impaired pulmonary function [chronic obstructive pulmonary disease (COPD), preserved ratio impaired spirometry (PRISm)]. Multi-marker models identified GDF-15 and IL-6 as joint risk predictors for risk of LC diagnosis, without further discrimination by CRP or NT-proBNP. A model based on age, sex, smoking-related variables, GFD-15 and IL-6 provided moderately strong discrimination for prediction of LC diagnoses within 9 years after blood sampling [area under the curve (AUC) =74.3% (57.3-90.2%)], compared to 67.0% (49.3-84.8%) for a model without biomarkers. For mortality by competing causes, a model including biomarkers resulted in an AUC of 76.2% (66.6-85.3%)], compared to 70.0% (60.9-77.9%) a model including age, sex and smoking variables.Serum GDF-15 and IL-6 may be useful indicators for estimating risks for LC and competing mortality among long-term smokers participating in LC screening, to optimize LC screening strategies.
000287029 536__ $$0G:(DE-HGF)POF4-313$$a313 - Krebsrisikofaktoren und Prävention (POF4-313)$$cPOF4-313$$fPOF IV$$x0
000287029 588__ $$aDataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
000287029 650_7 $$2Other$$aSerum biomarkers
000287029 650_7 $$2Other$$alung cancer screening (LC screening)
000287029 650_7 $$2Other$$alung function impairment (spirometry)
000287029 650_7 $$2Other$$amortality
000287029 650_7 $$2Other$$arisk modeling
000287029 7001_ $$0P:(DE-He78)79ab945544e5bc017a2317b6146ed3aa$$aJohnson, Theron$$b1$$udkfz
000287029 7001_ $$0P:(DE-He78)eba11eff7c9c475da132d5343d569759$$aMascalchi, Mario$$b2$$udkfz
000287029 7001_ $$0P:(DE-He78)fb68a9386399d72d84f7f34cfc6048b4$$aKatzke, Verena$$b3$$udkfz
000287029 7001_ $$0P:(DE-He78)3e76653311420a51a5faeb80363bd73e$$aDelorme, Stefan$$b4$$udkfz
000287029 7001_ $$0P:(DE-He78)4b2dc91c9d1ac33a1c0e0777d0c1697a$$aKaaks, Rudolf$$b5$$eLast author$$udkfz
000287029 773__ $$0PERI:(DE-600)2754335-3$$a10.21037/tlcr-23-548$$gVol. 12, no. 12, p. 2460 - 2475$$n12$$p2460 - 2475$$tTranslational Lung Cancer Research$$v12$$x2218-6751$$y2023
000287029 909CO $$ooai:inrepo02.dkfz.de:287029$$pVDB
000287029 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bTRANSL LUNG CANCER R : 2022$$d2023-08-28
000287029 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-08-28
000287029 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-08-28
000287029 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central$$d2023-08-28
000287029 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-08-28
000287029 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-08-28
000287029 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-08-28
000287029 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-08-28
000287029 915__ $$0StatID:(DE-HGF)1110$$2StatID$$aDBCoverage$$bCurrent Contents - Clinical Medicine$$d2023-08-28
000287029 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2023-08-28
000287029 9141_ $$y2023
000287029 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-HGF)0$$aDeutsches Krebsforschungszentrum$$b0$$kDKFZ
000287029 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)79ab945544e5bc017a2317b6146ed3aa$$aDeutsches Krebsforschungszentrum$$b1$$kDKFZ
000287029 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)eba11eff7c9c475da132d5343d569759$$aDeutsches Krebsforschungszentrum$$b2$$kDKFZ
000287029 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)fb68a9386399d72d84f7f34cfc6048b4$$aDeutsches Krebsforschungszentrum$$b3$$kDKFZ
000287029 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)3e76653311420a51a5faeb80363bd73e$$aDeutsches Krebsforschungszentrum$$b4$$kDKFZ
000287029 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)4b2dc91c9d1ac33a1c0e0777d0c1697a$$aDeutsches Krebsforschungszentrum$$b5$$kDKFZ
000287029 9131_ $$0G:(DE-HGF)POF4-313$$1G:(DE-HGF)POF4-310$$2G:(DE-HGF)POF4-300$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vKrebsrisikofaktoren und Prävention$$x0
000287029 9202_ $$0I:(DE-He78)C020-20160331$$kC020$$lC020 Epidemiologie von Krebs$$x0
000287029 9200_ $$0I:(DE-He78)C020-20160331$$kC020$$lC020 Epidemiologie von Krebs$$x0
000287029 9201_ $$0I:(DE-He78)C020-20160331$$kC020$$lC020 Epidemiologie von Krebs$$x0
000287029 9201_ $$0I:(DE-He78)C050-20160331$$kC050$$lMolekular-Genetische Epidemiologie$$x1
000287029 980__ $$ajournal
000287029 980__ $$aVDB
000287029 980__ $$aI:(DE-He78)C020-20160331
000287029 980__ $$aI:(DE-He78)C050-20160331
000287029 980__ $$aUNRESTRICTED