000287227 001__ 287227
000287227 005__ 20240301121601.0
000287227 0247_ $$2doi$$a10.1093/bioinformatics/btae029
000287227 0247_ $$2pmid$$apmid:38244574
000287227 0247_ $$2ISSN$$a0266-7061
000287227 0247_ $$2ISSN$$a1367-4803
000287227 0247_ $$2ISSN$$a1367-4811
000287227 0247_ $$2ISSN$$a1460-2059
000287227 037__ $$aDKFZ-2024-00176
000287227 041__ $$aEnglish
000287227 082__ $$a570
000287227 1001_ $$aDaenekas, Bjarne$$b0
000287227 245__ $$aConumee 2.0: Enhanced copy-number variation analysis from DNA methylation arrays for humans and mice.
000287227 260__ $$aOxford$$bOxford Univ. Press$$c2024
000287227 3367_ $$2DRIVER$$aarticle
000287227 3367_ $$2DataCite$$aOutput Types/Journal article
000287227 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1708073806_15586
000287227 3367_ $$2BibTeX$$aARTICLE
000287227 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000287227 3367_ $$00$$2EndNote$$aJournal Article
000287227 500__ $$a2024 Feb 1;40(2):btae029
000287227 520__ $$aCopy-number variations (CNVs) are common genetic alterations in cancer and their detection may impact tumor classification and therapeutic decisions. However, detection of clinically relevant large and focal CNVs remains challenging when sample material or resources are limited. This has motivated us to create a software tool to infer CNVs from DNA methylation arrays which are often generated as part of clinical routines and in research settings.We present our R package, conumee 2.0, that combines tangent normalization, an adjustable genomic binning heuristic, and weighted circular binary segmentation to utilize DNA methylation arrays for CNV analysis and mitigate technical biases and batch effects. Segmentation results were validated in a lung squamous cell carcinoma dataset from TCGA (n = 367 samples) by comparison to segmentations derived from genotyping arrays (Pearson's correlation coefficient of 0.91). We further introduce a segmented block bootstrapping approach to detect focal alternations that achieved 60.9% sensitivity and 98.6% specificity for deletions affecting CDKN2A/B (60.0% and 96.9% for RB1, respectively) in a low-grade glioma cohort from TCGA (n = 239 samples). Finally, our tool provides functionality to detect and summarize CNVs across large sample cohorts.Conumee 2.0 is available under open-source license at: https://github.com/hovestadtlab/conumee2.Supplementary data are available at Bioinformatics online.
000287227 536__ $$0G:(DE-HGF)POF4-312$$a312 - Funktionelle und strukturelle Genomforschung (POF4-312)$$cPOF4-312$$fPOF IV$$x0
000287227 588__ $$aDataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
000287227 7001_ $$aPérez, Eilís$$b1
000287227 7001_ $$aBoniolo, Fabio$$b2
000287227 7001_ $$aStefan, Sabina$$b3
000287227 7001_ $$aBenfatto, Salvatore$$b4
000287227 7001_ $$0P:(DE-He78)45440b44791309bd4b7dbb4f73333f9b$$aSill, Martin$$b5$$udkfz
000287227 7001_ $$0P:(DE-He78)a46a5b2a871859c8e2d63d2f8c666807$$aSturm, Dominik$$b6$$udkfz
000287227 7001_ $$0P:(DE-He78)551bb92841f634070997aa168d818492$$aJones, David T W$$b7$$udkfz
000287227 7001_ $$0P:(DE-He78)51bf9ae9cb5771b30c483e5597ef606c$$aCapper, David$$b8$$udkfz
000287227 7001_ $$0P:(DE-He78)1beba8f953e7ae7e96e8d3e9a48f10f7$$aZapatka, Marc$$b9$$udkfz
000287227 7001_ $$aHovestadt, Volker$$b10
000287227 773__ $$0PERI:(DE-600)1468345-3$$a10.1093/bioinformatics/btae029$$gp. btae029$$n2$$pbtae029$$tBioinformatics$$v40$$x0266-7061$$y2024
000287227 909CO $$ooai:inrepo02.dkfz.de:287227$$pVDB
000287227 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)45440b44791309bd4b7dbb4f73333f9b$$aDeutsches Krebsforschungszentrum$$b5$$kDKFZ
000287227 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)a46a5b2a871859c8e2d63d2f8c666807$$aDeutsches Krebsforschungszentrum$$b6$$kDKFZ
000287227 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)551bb92841f634070997aa168d818492$$aDeutsches Krebsforschungszentrum$$b7$$kDKFZ
000287227 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)51bf9ae9cb5771b30c483e5597ef606c$$aDeutsches Krebsforschungszentrum$$b8$$kDKFZ
000287227 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)1beba8f953e7ae7e96e8d3e9a48f10f7$$aDeutsches Krebsforschungszentrum$$b9$$kDKFZ
000287227 9131_ $$0G:(DE-HGF)POF4-312$$1G:(DE-HGF)POF4-310$$2G:(DE-HGF)POF4-300$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vFunktionelle und strukturelle Genomforschung$$x0
000287227 9141_ $$y2024
000287227 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2023-10-21$$wger
000287227 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-10-21
000287227 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-10-21
000287227 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central$$d2023-10-21
000287227 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2023-07-11T10:36:43Z
000287227 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2023-07-11T10:36:43Z
000287227 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Anonymous peer review$$d2023-07-11T10:36:43Z
000287227 915__ $$0LIC:(DE-HGF)CCBYNV$$2V:(DE-HGF)$$aCreative Commons Attribution CC BY (No Version)$$bDOAJ$$d2023-07-11T10:36:43Z
000287227 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-10-21
000287227 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2023-10-21
000287227 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-10-21
000287227 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-10-21
000287227 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2023-10-21
000287227 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2023-10-21
000287227 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-10-21
000287227 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bBIOINFORMATICS : 2022$$d2023-10-21
000287227 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2023-10-21
000287227 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2023-10-21
000287227 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bBIOINFORMATICS : 2022$$d2023-10-21
000287227 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2023-10-21
000287227 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2023-10-21
000287227 9201_ $$0I:(DE-He78)B062-20160331$$kB062$$lB062 Pädiatrische Neuroonkologie$$x0
000287227 9201_ $$0I:(DE-He78)HD01-20160331$$kHD01$$lDKTK HD zentral$$x1
000287227 9201_ $$0I:(DE-He78)B360-20160331$$kB360$$lPädiatische Gliomforschung$$x2
000287227 9201_ $$0I:(DE-He78)BE01-20160331$$kBE01$$lDKTK Koordinierungsstelle Berlin$$x3
000287227 9201_ $$0I:(DE-He78)B060-20160331$$kB060$$lB060 Molekulare Genetik$$x4
000287227 980__ $$ajournal
000287227 980__ $$aVDB
000287227 980__ $$aI:(DE-He78)B062-20160331
000287227 980__ $$aI:(DE-He78)HD01-20160331
000287227 980__ $$aI:(DE-He78)B360-20160331
000287227 980__ $$aI:(DE-He78)BE01-20160331
000287227 980__ $$aI:(DE-He78)B060-20160331
000287227 980__ $$aUNRESTRICTED