Home > Publications database > Segmentation of 71 Anatomical Structures Necessary for the Evaluation of Guideline-Conforming Clinical Target Volumes in Head and Neck Cancers. > print |
001 | 287260 | ||
005 | 20241111182443.0 | ||
024 | 7 | _ | |a 10.3390/cancers16020415 |2 doi |
024 | 7 | _ | |a pmid:38254904 |2 pmid |
037 | _ | _ | |a DKFZ-2024-00192 |
041 | _ | _ | |a English |
082 | _ | _ | |a 610 |
100 | 1 | _ | |a Walter, Alexandra |0 P:(DE-He78)4d81d9d214f814093f29c7e21473458b |b 0 |e First author |u dkfz |
245 | _ | _ | |a Segmentation of 71 Anatomical Structures Necessary for the Evaluation of Guideline-Conforming Clinical Target Volumes in Head and Neck Cancers. |
260 | _ | _ | |a Basel |c 2024 |b MDPI |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1706019527_7569 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
500 | _ | _ | |a #EA:E040#LA:E040# |
520 | _ | _ | |a The delineation of the clinical target volumes (CTVs) for radiation therapy is time-consuming, requires intensive training and shows high inter-observer variability. Supervised deep-learning methods depend heavily on consistent training data; thus, State-of-the-Art research focuses on making CTV labels more homogeneous and strictly bounding them to current standards. International consensus expert guidelines standardize CTV delineation by conditioning the extension of the clinical target volume on the surrounding anatomical structures. Training strategies that directly follow the construction rules given in the expert guidelines or the possibility of quantifying the conformance of manually drawn contours to the guidelines are still missing. Seventy-one anatomical structures that are relevant to CTV delineation in head- and neck-cancer patients, according to the expert guidelines, were segmented on 104 computed tomography scans, to assess the possibility of automating their segmentation by State-of-the-Art deep learning methods. All 71 anatomical structures were subdivided into three subsets of non-overlapping structures, and a 3D nnU-Net model with five-fold cross-validation was trained for each subset, to automatically segment the structures on planning computed tomography scans. We report the DICE, Hausdorff distance and surface DICE for 71 + 5 anatomical structures, for most of which no previous segmentation accuracies have been reported. For those structures for which prediction values have been reported, our segmentation accuracy matched or exceeded the reported values. The predictions from our models were always better than those predicted by the TotalSegmentator. The sDICE with 2 mm margin was larger than 80% for almost all the structures. Individual structures with decreased segmentation accuracy are analyzed and discussed with respect to their impact on the CTV delineation following the expert guidelines. No deviation is expected to affect the rule-based automation of the CTV delineation. |
536 | _ | _ | |a 315 - Bildgebung und Radioonkologie (POF4-315) |0 G:(DE-HGF)POF4-315 |c POF4-315 |f POF IV |x 0 |
588 | _ | _ | |a Dataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de |
650 | _ | 7 | |a anatomical structures |2 Other |
650 | _ | 7 | |a automatic segmentation |2 Other |
650 | _ | 7 | |a clinical target volume delineation |2 Other |
650 | _ | 7 | |a expert guidelines |2 Other |
650 | _ | 7 | |a head and neck cancer |2 Other |
650 | _ | 7 | |a lymph-node-level segmentation |2 Other |
650 | _ | 7 | |a multi-label segmentation |2 Other |
700 | 1 | _ | |a Hoegen-Saßmannshausen, Philipp |0 P:(DE-HGF)0 |b 1 |
700 | 1 | _ | |a Stanic, Goran |0 P:(DE-He78)7417fb75a237c8b7dd8424b897124db5 |b 2 |u dkfz |
700 | 1 | _ | |a Rodrigues, Joao Pedro |0 0000-0002-0272-8500 |b 3 |
700 | 1 | _ | |a Adeberg, Sebastian |0 0000-0001-8463-514X |b 4 |
700 | 1 | _ | |a Jäkel, Oliver |0 P:(DE-He78)440a3f62ea9ea5c63375308976fc4c44 |b 5 |u dkfz |
700 | 1 | _ | |a Frank, Martin |b 6 |
700 | 1 | _ | |a Giske, Kristina |0 P:(DE-He78)7b7d3650efd9aeb0aff30e7fbed3ecac |b 7 |e Last author |u dkfz |
773 | _ | _ | |a 10.3390/cancers16020415 |g Vol. 16, no. 2, p. 415 - |0 PERI:(DE-600)2527080-1 |n 2 |p 415 |t Cancers |v 16 |y 2024 |x 2072-6694 |
856 | 4 | _ | |u https://inrepo02.dkfz.de/record/287260/files/cancers-16-00415.pdf |
856 | 4 | _ | |u https://inrepo02.dkfz.de/record/287260/files/cancers-16-00415.pdf?subformat=pdfa |x pdfa |
909 | C | O | |o oai:inrepo02.dkfz.de:287260 |p VDB |p OpenAPC |p openCost |
910 | 1 | _ | |a Deutsches Krebsforschungszentrum |0 I:(DE-588b)2036810-0 |k DKFZ |b 0 |6 P:(DE-He78)4d81d9d214f814093f29c7e21473458b |
910 | 1 | _ | |a Deutsches Krebsforschungszentrum |0 I:(DE-588b)2036810-0 |k DKFZ |b 1 |6 P:(DE-HGF)0 |
910 | 1 | _ | |a Deutsches Krebsforschungszentrum |0 I:(DE-588b)2036810-0 |k DKFZ |b 2 |6 P:(DE-He78)7417fb75a237c8b7dd8424b897124db5 |
910 | 1 | _ | |a Deutsches Krebsforschungszentrum |0 I:(DE-588b)2036810-0 |k DKFZ |b 3 |6 0000-0002-0272-8500 |
910 | 1 | _ | |a Deutsches Krebsforschungszentrum |0 I:(DE-588b)2036810-0 |k DKFZ |b 5 |6 P:(DE-He78)440a3f62ea9ea5c63375308976fc4c44 |
910 | 1 | _ | |a Deutsches Krebsforschungszentrum |0 I:(DE-588b)2036810-0 |k DKFZ |b 7 |6 P:(DE-He78)7b7d3650efd9aeb0aff30e7fbed3ecac |
913 | 1 | _ | |a DE-HGF |b Gesundheit |l Krebsforschung |1 G:(DE-HGF)POF4-310 |0 G:(DE-HGF)POF4-315 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-300 |4 G:(DE-HGF)POF |v Bildgebung und Radioonkologie |x 0 |
914 | 1 | _ | |y 2024 |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b CANCERS : 2022 |d 2023-10-26 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2023-10-26 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2023-10-26 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0320 |2 StatID |b PubMed Central |d 2023-10-26 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0501 |2 StatID |b DOAJ Seal |d 2023-07-31T16:07:06Z |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0500 |2 StatID |b DOAJ |d 2023-07-31T16:07:06Z |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b DOAJ : Anonymous peer review |d 2023-07-31T16:07:06Z |
915 | _ | _ | |a Creative Commons Attribution CC BY (No Version) |0 LIC:(DE-HGF)CCBYNV |2 V:(DE-HGF) |b DOAJ |d 2023-07-31T16:07:06Z |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |d 2023-10-26 |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |d 2023-10-26 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2023-10-26 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1050 |2 StatID |b BIOSIS Previews |d 2023-10-26 |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2023-10-26 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2023-10-26 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1190 |2 StatID |b Biological Abstracts |d 2023-10-26 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2023-10-26 |
915 | _ | _ | |a IF >= 5 |0 StatID:(DE-HGF)9905 |2 StatID |b CANCERS : 2022 |d 2023-10-26 |
915 | _ | _ | |a Article Processing Charges |0 StatID:(DE-HGF)0561 |2 StatID |d 2023-10-26 |
915 | _ | _ | |a Fees |0 StatID:(DE-HGF)0700 |2 StatID |d 2023-10-26 |
915 | p | c | |a APC keys set |2 APC |0 PC:(DE-HGF)0000 |
915 | p | c | |a Local Funding |2 APC |0 PC:(DE-HGF)0001 |
915 | p | c | |a DFG OA Publikationskosten |2 APC |0 PC:(DE-HGF)0002 |
915 | p | c | |a DOAJ Journal |2 APC |0 PC:(DE-HGF)0003 |
920 | 2 | _ | |0 I:(DE-He78)E040-20160331 |k E040 |l E040 Med. Physik in der Strahlentherapie |x 0 |
920 | 1 | _ | |0 I:(DE-He78)E040-20160331 |k E040 |l E040 Med. Physik in der Strahlentherapie |x 0 |
920 | 1 | _ | |0 I:(DE-He78)E050-20160331 |k E050 |l E050 KKE Strahlentherapie |x 1 |
920 | 0 | _ | |0 I:(DE-He78)E040-20160331 |k E040 |l E040 Med. Physik in der Strahlentherapie |x 0 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a I:(DE-He78)E040-20160331 |
980 | _ | _ | |a I:(DE-He78)E050-20160331 |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a APC |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|