001     287282
005     20241125123459.0
024 7 _ |a 10.1007/s00401-023-02674-x
|2 doi
024 7 _ |a pmid:38265522
|2 pmid
024 7 _ |a 0001-6322
|2 ISSN
024 7 _ |a 1432-0533
|2 ISSN
024 7 _ |a altmetric:158684986
|2 altmetric
037 _ _ |a DKFZ-2024-00207
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a Pohl, Lara C
|b 0
245 _ _ |a Molecular characteristics and improved survival prediction in a cohort of 2023 ependymomas.
260 _ _ |a Heidelberg
|c 2024
|b Springer
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1706196538_5729
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The diagnosis of ependymoma has moved from a purely histopathological review with limited prognostic value to an integrated diagnosis, relying heavily on molecular information. However, as the integrated approach is still novel and some molecular ependymoma subtypes are quite rare, few studies have correlated integrated pathology and clinical outcome, often focusing on small series of single molecular types. We collected data from 2023 ependymomas as classified by DNA methylation profiling, consisting of 1736 previously published and 287 unpublished methylation profiles. Methylation data and clinical information were correlated, and an integrated model was developed to predict progression-free survival. Patients with EPN-PFA, EPN-ZFTA, and EPN-MYCN tumors showed the worst outcome with 10-year overall survival rates of 56%, 62%, and 32%, respectively. EPN-PFA harbored chromosome 1q gains and/or 6q losses as markers for worse survival. In supratentorial EPN-ZFTA, a combined loss of CDKN2A and B indicated worse survival, whereas a single loss did not. Twelve out of 200 EPN-ZFTA (6%) were located in the posterior fossa, and these tumors relapsed or progressed even earlier than supratentorial tumors with a combined loss of CDKN2A/B. Patients with MPE and PF-SE, generally regarded as non-aggressive tumors, only had a 10-year progression-free survival of 59% and 65%, respectively. For the prediction of the 5-year progression-free survival, Kaplan-Meier estimators based on the molecular subtype, a Support Vector Machine based on methylation, and an integrated model based on clinical factors, CNV data, and predicted methylation scores achieved balanced accuracies of 66%, 68%, and 73%, respectively. Excluding samples with low prediction scores resulted in balanced accuracies of over 80%. In sum, our large-scale analysis of ependymomas provides robust information about molecular features and their clinical meaning. Our data are particularly relevant for rare and hardly explored tumor subtypes and seemingly benign variants that display higher recurrence rates than previously believed.
536 _ _ |a 312 - Funktionelle und strukturelle Genomforschung (POF4-312)
|0 G:(DE-HGF)POF4-312
|c POF4-312
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
650 _ 7 |a DNA methylation
|2 Other
650 _ 7 |a Ependymoma
|2 Other
650 _ 7 |a Machine learning
|2 Other
650 _ 7 |a Molecular types
|2 Other
650 _ 7 |a Survival
|2 Other
650 _ 2 |a Humans
|2 MeSH
650 _ 2 |a Ependymoma
|2 MeSH
650 _ 2 |a Progression-Free Survival
|2 MeSH
650 _ 2 |a Protein Processing, Post-Translational
|2 MeSH
700 1 _ |a Leitheiser, Maximilian
|b 1
700 1 _ |a Obrecht, Denise
|b 2
700 1 _ |a Schweizer, Leonille
|0 P:(DE-He78)db2e8cf0dd8fa826896839ffee4b1411
|b 3
|u dkfz
700 1 _ |a Wefers, Annika K
|b 4
700 1 _ |a Eckhardt, Alicia
|b 5
700 1 _ |a Raffeld, Mark
|b 6
700 1 _ |a Sturm, Dominik
|0 P:(DE-He78)a46a5b2a871859c8e2d63d2f8c666807
|b 7
|u dkfz
700 1 _ |a Pajtler, Kristian W
|0 P:(DE-He78)a7c1bbac024fa232d9c6b78443328d9d
|b 8
|u dkfz
700 1 _ |a Rutkowski, Stefan
|b 9
700 1 _ |a Fukuoka, Kohei
|b 10
700 1 _ |a Ichimura, Koichi
|b 11
700 1 _ |a Bockmayr, Michael
|b 12
700 1 _ |a Schüller, Ulrich
|0 0000-0002-8731-1121
|b 13
773 _ _ |a 10.1007/s00401-023-02674-x
|g Vol. 147, no. 1, p. 24
|0 PERI:(DE-600)1458410-4
|n 1
|p 24
|t Acta neuropathologica
|v 147
|y 2024
|x 0001-6322
856 4 _ |u https://inrepo02.dkfz.de/record/287282/files/s00401-023-02674-x.pdf
856 4 _ |u https://inrepo02.dkfz.de/record/287282/files/s00401-023-02674-x.pdf?subformat=pdfa
|x pdfa
909 C O |o oai:inrepo02.dkfz.de:287282
|p VDB
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 3
|6 P:(DE-He78)db2e8cf0dd8fa826896839ffee4b1411
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 7
|6 P:(DE-He78)a46a5b2a871859c8e2d63d2f8c666807
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 8
|6 P:(DE-He78)a7c1bbac024fa232d9c6b78443328d9d
913 1 _ |a DE-HGF
|b Gesundheit
|l Krebsforschung
|1 G:(DE-HGF)POF4-310
|0 G:(DE-HGF)POF4-312
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Funktionelle und strukturelle Genomforschung
|x 0
914 1 _ |y 2024
915 _ _ |a DEAL Springer
|0 StatID:(DE-HGF)3002
|2 StatID
|d 2023-10-21
|w ger
915 _ _ |a DEAL Springer
|0 StatID:(DE-HGF)3002
|2 StatID
|d 2023-10-21
|w ger
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ACTA NEUROPATHOL : 2022
|d 2023-10-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-10-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-10-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2023-10-21
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2023-10-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-10-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2023-10-21
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2023-10-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-10-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2023-10-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2023-10-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2023-10-21
915 _ _ |a IF >= 10
|0 StatID:(DE-HGF)9910
|2 StatID
|b ACTA NEUROPATHOL : 2022
|d 2023-10-21
920 1 _ |0 I:(DE-He78)FM01-20160331
|k FM01
|l DKTK Koordinierungsstelle Frankfurt
|x 0
920 1 _ |0 I:(DE-He78)B360-20160331
|k B360
|l Pädiatische Gliomforschung
|x 1
920 1 _ |0 I:(DE-He78)HD01-20160331
|k HD01
|l DKTK HD zentral
|x 2
920 1 _ |0 I:(DE-He78)B062-20160331
|k B062
|l B062 Pädiatrische Neuroonkologie
|x 3
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)FM01-20160331
980 _ _ |a I:(DE-He78)B360-20160331
980 _ _ |a I:(DE-He78)HD01-20160331
980 _ _ |a I:(DE-He78)B062-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21