000287292 001__ 287292
000287292 005__ 20240229155129.0
000287292 0247_ $$2doi$$a10.3389/fragi.2023.1258183
000287292 0247_ $$2pmid$$apmid:38274286
000287292 0247_ $$2pmc$$apmc:PMC10809641
000287292 0247_ $$2altmetric$$aaltmetric:158307865
000287292 037__ $$aDKFZ-2024-00212
000287292 041__ $$aEnglish
000287292 082__ $$a610
000287292 1001_ $$aBienkowska, Agata$$b0
000287292 245__ $$aDevelopment of an epigenetic clock to predict visual age progression of human skin.
000287292 260__ $$aLausanne$$bFrontiers Media S.A.$$c2023
000287292 3367_ $$2DRIVER$$aarticle
000287292 3367_ $$2DataCite$$aOutput Types/Journal article
000287292 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1707303828_6049
000287292 3367_ $$2BibTeX$$aARTICLE
000287292 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000287292 3367_ $$00$$2EndNote$$aJournal Article
000287292 500__ $$aDKFZ-ZMBH Alliance / Front Aging. 2023; 4: 1258183.Published online 2024 Jan 11. doi: 10.3389/fragi.2023.1258183
000287292 520__ $$aAging is a complex process characterized by the gradual decline of physiological functions, leading to increased vulnerability to age-related diseases and reduced quality of life. Alterations in DNA methylation (DNAm) patterns have emerged as a fundamental characteristic of aged human skin, closely linked to the development of the well-known skin aging phenotype. These changes have been correlated with dysregulated gene expression and impaired tissue functionality. In particular, the skin, with its visible manifestations of aging, provides a unique model to study the aging process. Despite the importance of epigenetic age clocks in estimating biological age based on the correlation between methylation patterns and chronological age, a second-generation epigenetic age clock, which correlates DNAm patterns with a particular phenotype, specifically tailored to skin tissue is still lacking. In light of this gap, we aimed to develop a novel second-generation epigenetic age clock explicitly designed for skin tissue to facilitate a deeper understanding of the factors contributing to individual variations in age progression. To achieve this, we used methylation patterns from more than 370 female volunteers and developed the first skin-specific second-generation epigenetic age clock that accurately predicts the skin aging phenotype represented by wrinkle grade, visual facial age, and visual age progression, respectively. We then validated the performance of our clocks on independent datasets and demonstrated their broad applicability. In addition, we integrated gene expression and methylation data from independent studies to identify potential pathways contributing to skin age progression. Our results demonstrate that our epigenetic age clock, VisAgeX, specifically predicting visual age progression, not only captures known biological pathways associated with skin aging, but also adds novel pathways associated with skin aging.
000287292 536__ $$0G:(DE-HGF)POF4-311$$a311 - Zellbiologie und Tumorbiologie (POF4-311)$$cPOF4-311$$fPOF IV$$x0
000287292 588__ $$aDataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
000287292 650_7 $$2Other$$aDNA methylation
000287292 650_7 $$2Other$$aage progression
000287292 650_7 $$2Other$$aaging
000287292 650_7 $$2Other$$abiological age
000287292 650_7 $$2Other$$aepigenetic age clock
000287292 650_7 $$2Other$$askin aging
000287292 650_7 $$2Other$$avisual age
000287292 650_7 $$2Other$$awrinkles
000287292 7001_ $$0P:(DE-He78)e712dff472bccab611dd1641f262ea5a$$aRaddatz, Günter$$b1$$udkfz
000287292 7001_ $$aSöhle, Jörn$$b2
000287292 7001_ $$aKristof, Boris$$b3
000287292 7001_ $$aVölzke, Henry$$b4
000287292 7001_ $$aGallinat, Stefan$$b5
000287292 7001_ $$0P:(DE-He78)a8d53a8cdc716390a6cbacdead227143$$aLyko, Frank$$b6$$udkfz
000287292 7001_ $$aKaderali, Lars$$b7
000287292 7001_ $$aWinnefeld, Marc$$b8
000287292 7001_ $$aGrönniger, Elke$$b9
000287292 7001_ $$aFalckenhayn, Cassandra$$b10
000287292 773__ $$0PERI:(DE-600)3076785-4$$a10.3389/fragi.2023.1258183$$gVol. 4, p. 1258183$$p1258183$$tFrontiers in aging$$v4$$x2673-6217$$y2023
000287292 909CO $$ooai:inrepo02.dkfz.de:287292$$pVDB
000287292 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)e712dff472bccab611dd1641f262ea5a$$aDeutsches Krebsforschungszentrum$$b1$$kDKFZ
000287292 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)a8d53a8cdc716390a6cbacdead227143$$aDeutsches Krebsforschungszentrum$$b6$$kDKFZ
000287292 9131_ $$0G:(DE-HGF)POF4-311$$1G:(DE-HGF)POF4-310$$2G:(DE-HGF)POF4-300$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vZellbiologie und Tumorbiologie$$x0
000287292 9141_ $$y2023
000287292 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-09-02
000287292 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central$$d2023-09-02
000287292 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2021-07-13T13:40:23Z
000287292 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2021-07-13T13:40:23Z
000287292 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Anonymous peer review$$d2021-07-13T13:40:23Z
000287292 915__ $$0LIC:(DE-HGF)CCBYNV$$2V:(DE-HGF)$$aCreative Commons Attribution CC BY (No Version)$$bDOAJ$$d2021-07-13T13:40:23Z
000287292 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2023-09-02
000287292 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2023-09-02
000287292 9201_ $$0I:(DE-He78)A130-20160331$$kA130$$lA130 Epigenetik$$x0
000287292 980__ $$ajournal
000287292 980__ $$aVDB
000287292 980__ $$aI:(DE-He78)A130-20160331
000287292 980__ $$aUNRESTRICTED