000287462 001__ 287462
000287462 005__ 20240422134815.0
000287462 0247_ $$2doi$$a10.1088/1361-6560/ad247e
000287462 0247_ $$2pmid$$apmid:38295403
000287462 0247_ $$2ISSN$$a0031-9155
000287462 0247_ $$2ISSN$$a1361-6560
000287462 037__ $$aDKFZ-2024-00254
000287462 041__ $$aEnglish
000287462 082__ $$a530
000287462 1001_ $$0P:(DE-He78)d51f2b979a3118c75aba4dc5a79247f8$$aMetzner, Margareta$$b0$$eFirst author$$udkfz
000287462 245__ $$aEnergy painting: helium-beam radiography with thin detectors and multiple beam energies.
000287462 260__ $$aBristol$$bIOP Publ.$$c2024
000287462 3367_ $$2DRIVER$$aarticle
000287462 3367_ $$2DataCite$$aOutput Types/Journal article
000287462 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1713786460_20489
000287462 3367_ $$2BibTeX$$aARTICLE
000287462 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000287462 3367_ $$00$$2EndNote$$aJournal Article
000287462 500__ $$a#EA:E040#LA:E040# / Phys. Med. Biol. 69 (2024) 055002
000287462 520__ $$a
Objective.Compact ion imaging systems based on thin detectors are a promising prospect for the clinical environment since they are easily integrated into the clinical workflow. Their measurement principle is based on energy deposition instead of the conventionally measured residual energy or range. Therefore, thin detectors are limited in the water-equivalent thickness range they can image with high precision. This article presents our energy painting method, which has been developed to render high precision imaging with thin detectors feasible even for objects with larger, clinically relevant WET ranges.
Approach. A detection system exclusively based on pixelated silicon Timepix detectors was used at the Heidelberg ion-beam therapy center to track single helium ions and measure their energy deposition behind the imaged object. Calibration curves were established for five initial beam energies to relate the measured energy deposition to water-equivalent thickness (WET). They were evaluated regarding their accuracy, precision and temporal stability. Furthermore, a 60 mm × 12 mm region of a wedge phantom was imaged quantitatively exploiting the calibrated energies and five different mono-energetic images. These mono-energetic images were combined in a pixel-by-pixel manner by averaging the WET-data weighted according to their single-ion WET precision (SIWP) and the number of contributing ions.
Main result.A quantitative helium-beam radiograph of the wedge phantom with an average SIWP of (1.82 ± 0.05) % over the entire WET interval from 150 mm to 220 mm was obtained. Compared to the previously used methodology, the SIWP improved by a factor of 2.49 ± 0.16. The relative stopping power value of the wedge derived from the energy-painted image matches the result from range pullback measurements with a relative deviation of only 0.4 %.
Significance.The proposed method overcomes the insufficient precision for wide WET ranges when employing detection systems with thin detectors. Applying this method is an important prerequisite for imaging of patients. Hence, it advances detection systems based on energy deposition measurements towards clinical implementation.
.
000287462 536__ $$0G:(DE-HGF)POF4-315$$a315 - Bildgebung und Radioonkologie (POF4-315)$$cPOF4-315$$fPOF IV$$x0
000287462 588__ $$aDataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
000287462 650_7 $$2Other$$aTimepix
000287462 650_7 $$2Other$$aion imaging
000287462 650_7 $$2Other$$aion-beam radiography
000287462 650_7 $$2Other$$aion-beam radiotherapy
000287462 650_7 $$2Other$$aproton therapy
000287462 650_7 $$2Other$$arelative stopping power
000287462 650_7 $$2Other$$asilicon pixel detectors
000287462 7001_ $$0P:(DE-He78)0f43ca74ee13754fdad96c138b323906$$aZhevachevska, Daria$$b1$$udkfz
000287462 7001_ $$0P:(DE-He78)f0fb397c67acc1650274160f9a19a4fb$$aSchlechter, Annika$$b2$$udkfz
000287462 7001_ $$0P:(DE-He78)e3ac90076fa7774c851ffb20e17dbc11$$aKehrein, Florian$$b3$$udkfz
000287462 7001_ $$0P:(DE-He78)79cb3d08db060ae75e7e080ba6be6e8a$$aSchlecker, Julian$$b4$$udkfz
000287462 7001_ $$0P:(DE-He78)8b63b8397312105c7a7d7e4aba379e22$$aMurillo, Carlos$$b5$$udkfz
000287462 7001_ $$aBrons, Stephan$$b6
000287462 7001_ $$00000-0002-6056-9747$$aJaekel, Oliver$$b7
000287462 7001_ $$0P:(DE-He78)dfe82ba00edb8b1609794fbe37bd616f$$aMartisikova, Maria$$b8$$eLast author$$udkfz
000287462 7001_ $$0P:(DE-He78)4af90cacc534bcab08c5a70badbb2d5e$$aGehrke, Tim$$b9$$eLast author$$udkfz
000287462 773__ $$0PERI:(DE-600)1473501-5$$a10.1088/1361-6560/ad247e$$p055002$$tPhysics in medicine and biology$$v69$$x0031-9155$$y2024
000287462 909CO $$ooai:inrepo02.dkfz.de:287462$$pVDB
000287462 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)d51f2b979a3118c75aba4dc5a79247f8$$aDeutsches Krebsforschungszentrum$$b0$$kDKFZ
000287462 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)0f43ca74ee13754fdad96c138b323906$$aDeutsches Krebsforschungszentrum$$b1$$kDKFZ
000287462 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)f0fb397c67acc1650274160f9a19a4fb$$aDeutsches Krebsforschungszentrum$$b2$$kDKFZ
000287462 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)e3ac90076fa7774c851ffb20e17dbc11$$aDeutsches Krebsforschungszentrum$$b3$$kDKFZ
000287462 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)79cb3d08db060ae75e7e080ba6be6e8a$$aDeutsches Krebsforschungszentrum$$b4$$kDKFZ
000287462 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)8b63b8397312105c7a7d7e4aba379e22$$aDeutsches Krebsforschungszentrum$$b5$$kDKFZ
000287462 9101_ $$0I:(DE-588b)2036810-0$$60000-0002-6056-9747$$aDeutsches Krebsforschungszentrum$$b7$$kDKFZ
000287462 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)dfe82ba00edb8b1609794fbe37bd616f$$aDeutsches Krebsforschungszentrum$$b8$$kDKFZ
000287462 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)4af90cacc534bcab08c5a70badbb2d5e$$aDeutsches Krebsforschungszentrum$$b9$$kDKFZ
000287462 9131_ $$0G:(DE-HGF)POF4-315$$1G:(DE-HGF)POF4-310$$2G:(DE-HGF)POF4-300$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vBildgebung und Radioonkologie$$x0
000287462 9141_ $$y2024
000287462 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium$$d2023-08-26$$wger
000287462 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-08-26
000287462 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-08-26
000287462 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2023-08-26
000287462 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-08-26
000287462 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-08-26
000287462 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2023-08-26
000287462 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2023-08-26
000287462 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-08-26
000287462 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPHYS MED BIOL : 2022$$d2023-08-26
000287462 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-08-26
000287462 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2023-08-26
000287462 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2023-08-26
000287462 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2023-08-26
000287462 9202_ $$0I:(DE-He78)E040-20160331$$kE040$$lE040 Med. Physik in der Strahlentherapie$$x0
000287462 9201_ $$0I:(DE-He78)E040-20160331$$kE040$$lE040 Med. Physik in der Strahlentherapie$$x0
000287462 9201_ $$0I:(DE-He78)E220-20160331$$kE220$$lE220 Radioonkologie Radiobiologie$$x1
000287462 9201_ $$0I:(DE-He78)E020-20160331$$kE020$$lE020 Med. Physik in der Radiologie$$x2
000287462 9200_ $$0I:(DE-He78)E040-20160331$$kE040$$lE040 Med. Physik in der Strahlentherapie$$x0
000287462 980__ $$ajournal
000287462 980__ $$aVDB
000287462 980__ $$aI:(DE-He78)E040-20160331
000287462 980__ $$aI:(DE-He78)E220-20160331
000287462 980__ $$aI:(DE-He78)E020-20160331
000287462 980__ $$aUNRESTRICTED