001     287462
005     20240422134815.0
024 7 _ |a 10.1088/1361-6560/ad247e
|2 doi
024 7 _ |a pmid:38295403
|2 pmid
024 7 _ |a 0031-9155
|2 ISSN
024 7 _ |a 1361-6560
|2 ISSN
037 _ _ |a DKFZ-2024-00254
041 _ _ |a English
082 _ _ |a 530
100 1 _ |a Metzner, Margareta
|0 P:(DE-He78)d51f2b979a3118c75aba4dc5a79247f8
|b 0
|e First author
|u dkfz
245 _ _ |a Energy painting: helium-beam radiography with thin detectors and multiple beam energies.
260 _ _ |a Bristol
|c 2024
|b IOP Publ.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1713786460_20489
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a #EA:E040#LA:E040# / Phys. Med. Biol. 69 (2024) 055002
520 _ _ |a Objective.Compact ion imaging systems based on thin detectors are a promising prospect for the clinical environment since they are easily integrated into the clinical workflow. Their measurement principle is based on energy deposition instead of the conventionally measured residual energy or range. Therefore, thin detectors are limited in the water-equivalent thickness range they can image with high precision. This article presents our energy painting method, which has been developed to render high precision imaging with thin detectors feasible even for objects with larger, clinically relevant WET ranges. Approach. A detection system exclusively based on pixelated silicon Timepix detectors was used at the Heidelberg ion-beam therapy center to track single helium ions and measure their energy deposition behind the imaged object. Calibration curves were established for five initial beam energies to relate the measured energy deposition to water-equivalent thickness (WET). They were evaluated regarding their accuracy, precision and temporal stability. Furthermore, a 60 mm × 12 mm region of a wedge phantom was imaged quantitatively exploiting the calibrated energies and five different mono-energetic images. These mono-energetic images were combined in a pixel-by-pixel manner by averaging the WET-data weighted according to their single-ion WET precision (SIWP) and the number of contributing ions. Main result.A quantitative helium-beam radiograph of the wedge phantom with an average SIWP of (1.82 ± 0.05) % over the entire WET interval from 150 mm to 220 mm was obtained. Compared to the previously used methodology, the SIWP improved by a factor of 2.49 ± 0.16. The relative stopping power value of the wedge derived from the energy-painted image matches the result from range pullback measurements with a relative deviation of only 0.4 %. Significance.The proposed method overcomes the insufficient precision for wide WET ranges when employing detection systems with thin detectors. Applying this method is an important prerequisite for imaging of patients. Hence, it advances detection systems based on energy deposition measurements towards clinical implementation. .
536 _ _ |a 315 - Bildgebung und Radioonkologie (POF4-315)
|0 G:(DE-HGF)POF4-315
|c POF4-315
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
650 _ 7 |a Timepix
|2 Other
650 _ 7 |a ion imaging
|2 Other
650 _ 7 |a ion-beam radiography
|2 Other
650 _ 7 |a ion-beam radiotherapy
|2 Other
650 _ 7 |a proton therapy
|2 Other
650 _ 7 |a relative stopping power
|2 Other
650 _ 7 |a silicon pixel detectors
|2 Other
700 1 _ |a Zhevachevska, Daria
|0 P:(DE-He78)0f43ca74ee13754fdad96c138b323906
|b 1
|u dkfz
700 1 _ |a Schlechter, Annika
|0 P:(DE-He78)f0fb397c67acc1650274160f9a19a4fb
|b 2
|u dkfz
700 1 _ |a Kehrein, Florian
|0 P:(DE-He78)e3ac90076fa7774c851ffb20e17dbc11
|b 3
|u dkfz
700 1 _ |a Schlecker, Julian
|0 P:(DE-He78)79cb3d08db060ae75e7e080ba6be6e8a
|b 4
|u dkfz
700 1 _ |a Murillo, Carlos
|0 P:(DE-He78)8b63b8397312105c7a7d7e4aba379e22
|b 5
|u dkfz
700 1 _ |a Brons, Stephan
|b 6
700 1 _ |a Jaekel, Oliver
|0 0000-0002-6056-9747
|b 7
700 1 _ |a Martisikova, Maria
|0 P:(DE-He78)dfe82ba00edb8b1609794fbe37bd616f
|b 8
|e Last author
|u dkfz
700 1 _ |a Gehrke, Tim
|0 P:(DE-He78)4af90cacc534bcab08c5a70badbb2d5e
|b 9
|e Last author
|u dkfz
773 _ _ |a 10.1088/1361-6560/ad247e
|0 PERI:(DE-600)1473501-5
|p 055002
|t Physics in medicine and biology
|v 69
|y 2024
|x 0031-9155
909 C O |p VDB
|o oai:inrepo02.dkfz.de:287462
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 0
|6 P:(DE-He78)d51f2b979a3118c75aba4dc5a79247f8
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 1
|6 P:(DE-He78)0f43ca74ee13754fdad96c138b323906
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 2
|6 P:(DE-He78)f0fb397c67acc1650274160f9a19a4fb
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 3
|6 P:(DE-He78)e3ac90076fa7774c851ffb20e17dbc11
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 4
|6 P:(DE-He78)79cb3d08db060ae75e7e080ba6be6e8a
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 5
|6 P:(DE-He78)8b63b8397312105c7a7d7e4aba379e22
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 7
|6 0000-0002-6056-9747
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 8
|6 P:(DE-He78)dfe82ba00edb8b1609794fbe37bd616f
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 9
|6 P:(DE-He78)4af90cacc534bcab08c5a70badbb2d5e
913 1 _ |a DE-HGF
|b Gesundheit
|l Krebsforschung
|1 G:(DE-HGF)POF4-310
|0 G:(DE-HGF)POF4-315
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Bildgebung und Radioonkologie
|x 0
914 1 _ |y 2024
915 _ _ |a National-Konsortium
|0 StatID:(DE-HGF)0430
|2 StatID
|d 2023-08-26
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-08-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-08-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2023-08-26
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2023-08-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-08-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2023-08-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2023-08-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2023-08-26
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b PHYS MED BIOL : 2022
|d 2023-08-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-08-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2023-08-26
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2023-08-26
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2023-08-26
920 2 _ |0 I:(DE-He78)E040-20160331
|k E040
|l E040 Med. Physik in der Strahlentherapie
|x 0
920 1 _ |0 I:(DE-He78)E040-20160331
|k E040
|l E040 Med. Physik in der Strahlentherapie
|x 0
920 1 _ |0 I:(DE-He78)E220-20160331
|k E220
|l E220 Radioonkologie Radiobiologie
|x 1
920 1 _ |0 I:(DE-He78)E020-20160331
|k E020
|l E020 Med. Physik in der Radiologie
|x 2
920 0 _ |0 I:(DE-He78)E040-20160331
|k E040
|l E040 Med. Physik in der Strahlentherapie
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)E040-20160331
980 _ _ |a I:(DE-He78)E220-20160331
980 _ _ |a I:(DE-He78)E020-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21