TY - JOUR
AU - Bao, Xuanwen
AU - Li, Qiong
AU - Chen, Dong
AU - Dai, Xiaomeng
AU - Liu, Chuan
AU - Tian, Weihong
AU - Zhang, Hangyu
AU - Jin, Yuzhi
AU - Wang, Yin
AU - Cheng, Jinlin
AU - Lai, Chunyu
AU - Ye, Chanqi
AU - Xin, Shan
AU - Li, Xin
AU - Su, Ge
AU - Ding, Yongfeng
AU - Xiong, Yangyang
AU - Xie, Jindong
AU - Tano, Vincent
AU - Wang, Yanfang
AU - Fu, Wenguang
AU - Deng, Shuiguang
AU - Fang, Weijia
AU - Sheng, Jianpeng
AU - Ruan, Jian
AU - Zhao, Peng
TI - A multiomics analysis-assisted deep learning model identifies a macrophage-oriented module as a potential therapeutic target in colorectal cancer.
JO - Cell reports / Medicine
VL - 5
IS - 2
SN - 2666-3791
CY - Maryland Heights, MO
PB - Elsevier
M1 - DKFZ-2024-00270
SP - 101399
PY - 2024
N1 - 2024 Feb 20;5(2):101399
AB - Colorectal cancer (CRC) is a common malignancy involving multiple cellular components. The CRC tumor microenvironment (TME) has been characterized well at single-cell resolution. However, a spatial interaction map of the CRC TME is still elusive. Here, we integrate multiomics analyses and establish a spatial interaction map to improve the prognosis, prediction, and therapeutic development for CRC. We construct a CRC immune module (CCIM) that comprises FOLR2+ macrophages, exhausted CD8+ T cells, tolerant CD8+ T cells, exhausted CD4+ T cells, and regulatory T cells. Multiplex immunohistochemistry is performed to depict the CCIM. Based on this, we utilize advanced deep learning technology to establish a spatial interaction map and predict chemotherapy response. CCIM-Net is constructed, which demonstrates good predictive performance for chemotherapy response in both the training and testing cohorts. Lastly, targeting FOLR2+ macrophage therapeutics is used to disrupt the immunosuppressive CCIM and enhance the chemotherapy response in vivo.
KW - FOLR2(+) macrophages (Other)
KW - artificial intelligence (Other)
KW - colorectal cancer (Other)
KW - immuno module (Other)
KW - tumor microenvironment (Other)
LB - PUB:(DE-HGF)16
C6 - pmid:38307032
DO - DOI:10.1016/j.xcrm.2024.101399
UR - https://inrepo02.dkfz.de/record/287616
ER -