Home > Publications database > Detection of senescence using machine learning algorithms based on nuclear features. > print |
001 | 287620 | ||
005 | 20241114103512.0 | ||
024 | 7 | _ | |a 10.1038/s41467-024-45421-w |2 doi |
024 | 7 | _ | |a pmid:38310113 |2 pmid |
024 | 7 | _ | |a altmetric:159073466 |2 altmetric |
037 | _ | _ | |a DKFZ-2024-00274 |
041 | _ | _ | |a English |
082 | _ | _ | |a 500 |
100 | 1 | _ | |a Duran, Imanol |0 0000-0001-6615-3788 |b 0 |
245 | _ | _ | |a Detection of senescence using machine learning algorithms based on nuclear features. |
260 | _ | _ | |a [London] |c 2024 |b Nature Publishing Group UK |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1712310294_10719 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a Cellular senescence is a stress response with broad pathophysiological implications. Senotherapies can induce senescence to treat cancer or eliminate senescent cells to ameliorate ageing and age-related pathologies. However, the success of senotherapies is limited by the lack of reliable ways to identify senescence. Here, we use nuclear morphology features of senescent cells to devise machine-learning classifiers that accurately predict senescence induced by diverse stressors in different cell types and tissues. As a proof-of-principle, we use these senescence classifiers to characterise senolytics and to screen for drugs that selectively induce senescence in cancer cells but not normal cells. Moreover, a tissue senescence score served to assess the efficacy of senolytic drugs and identified senescence in mouse models of liver cancer initiation, ageing, and fibrosis, and in patients with fatty liver disease. Thus, senescence classifiers can help to detect pathophysiological senescence and to discover and validate potential senotherapies. |
536 | _ | _ | |a 314 - Immunologie und Krebs (POF4-314) |0 G:(DE-HGF)POF4-314 |c POF4-314 |f POF IV |x 0 |
588 | _ | _ | |a Dataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de |
700 | 1 | _ | |a Pombo, Joaquim |b 1 |
700 | 1 | _ | |a Sun, Bin |b 2 |
700 | 1 | _ | |a Gallage, Suchira Upeksha |0 P:(DE-He78)c3b4d9cf232a212cd5dc05d94e1a91fc |b 3 |u dkfz |
700 | 1 | _ | |a Kudo, Hiromi |b 4 |
700 | 1 | _ | |a McHugh, Domhnall |b 5 |
700 | 1 | _ | |a Bousset, Laura |0 0000-0002-5339-3173 |b 6 |
700 | 1 | _ | |a Barragan Avila, Jose Efren |0 P:(DE-He78)04c93dc33b8f0bc5a746841c998f4018 |b 7 |u dkfz |
700 | 1 | _ | |a Forlano, Roberta |0 0000-0003-4746-7065 |b 8 |
700 | 1 | _ | |a Manousou, Pinelopi |b 9 |
700 | 1 | _ | |a Heikenwalder, Mathias |0 P:(DE-He78)66ed2d4ec9bc11d29b87ac006adf85e5 |b 10 |u dkfz |
700 | 1 | _ | |a Withers, Dominic J |0 0000-0002-8009-7521 |b 11 |
700 | 1 | _ | |a Vernia, Santiago |0 0000-0001-6728-5555 |b 12 |
700 | 1 | _ | |a Goldin, Robert D |0 0000-0001-5184-4519 |b 13 |
700 | 1 | _ | |a Gil, Jesús |0 0000-0002-4303-6260 |b 14 |
773 | _ | _ | |a 10.1038/s41467-024-45421-w |g Vol. 15, no. 1, p. 1041 |0 PERI:(DE-600)2553671-0 |n 1 |p 1041 |t Nature Communications |v 15 |y 2024 |x 2041-1723 |
856 | 4 | _ | |u https://inrepo02.dkfz.de/record/287620/files/s41467-024-45421-w.pdf |
856 | 4 | _ | |u https://inrepo02.dkfz.de/record/287620/files/s41467-024-45421-w.pdf?subformat=pdfa |x pdfa |
909 | C | O | |p VDB |o oai:inrepo02.dkfz.de:287620 |
910 | 1 | _ | |a Deutsches Krebsforschungszentrum |0 I:(DE-588b)2036810-0 |k DKFZ |b 3 |6 P:(DE-He78)c3b4d9cf232a212cd5dc05d94e1a91fc |
910 | 1 | _ | |a Deutsches Krebsforschungszentrum |0 I:(DE-588b)2036810-0 |k DKFZ |b 7 |6 P:(DE-He78)04c93dc33b8f0bc5a746841c998f4018 |
910 | 1 | _ | |a Deutsches Krebsforschungszentrum |0 I:(DE-588b)2036810-0 |k DKFZ |b 10 |6 P:(DE-He78)66ed2d4ec9bc11d29b87ac006adf85e5 |
913 | 1 | _ | |a DE-HGF |b Gesundheit |l Krebsforschung |1 G:(DE-HGF)POF4-310 |0 G:(DE-HGF)POF4-314 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-300 |4 G:(DE-HGF)POF |v Immunologie und Krebs |x 0 |
914 | 1 | _ | |y 2024 |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b NAT COMMUN : 2022 |d 2023-08-29 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2023-08-29 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2023-08-29 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0320 |2 StatID |b PubMed Central |d 2023-08-29 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0501 |2 StatID |b DOAJ Seal |d 2023-05-02T09:09:09Z |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0500 |2 StatID |b DOAJ |d 2023-05-02T09:09:09Z |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b DOAJ : Peer review |d 2023-05-02T09:09:09Z |
915 | _ | _ | |a Creative Commons Attribution CC BY (No Version) |0 LIC:(DE-HGF)CCBYNV |2 V:(DE-HGF) |b DOAJ |d 2023-05-02T09:09:09Z |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2023-08-29 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1050 |2 StatID |b BIOSIS Previews |d 2023-08-29 |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2023-08-29 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2023-08-29 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1030 |2 StatID |b Current Contents - Life Sciences |d 2023-08-29 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1190 |2 StatID |b Biological Abstracts |d 2023-08-29 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1060 |2 StatID |b Current Contents - Agriculture, Biology and Environmental Sciences |d 2023-08-29 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1040 |2 StatID |b Zoological Record |d 2023-08-29 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2023-08-29 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |d 2023-08-29 |
915 | _ | _ | |a IF >= 15 |0 StatID:(DE-HGF)9915 |2 StatID |b NAT COMMUN : 2022 |d 2023-08-29 |
915 | _ | _ | |a Article Processing Charges |0 StatID:(DE-HGF)0561 |2 StatID |d 2023-08-29 |
915 | _ | _ | |a Fees |0 StatID:(DE-HGF)0700 |2 StatID |d 2023-08-29 |
920 | 1 | _ | |0 I:(DE-He78)F180-20160331 |k F180 |l Chronische Entzündung und Krebs |x 0 |
920 | 1 | _ | |0 I:(DE-He78)D440-20160331 |k D440 |l Chronische Entzündung und Krebs |x 1 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a I:(DE-He78)F180-20160331 |
980 | _ | _ | |a I:(DE-He78)D440-20160331 |
980 | _ | _ | |a UNRESTRICTED |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|