001     287620
005     20241114103512.0
024 7 _ |a 10.1038/s41467-024-45421-w
|2 doi
024 7 _ |a pmid:38310113
|2 pmid
024 7 _ |a altmetric:159073466
|2 altmetric
037 _ _ |a DKFZ-2024-00274
041 _ _ |a English
082 _ _ |a 500
100 1 _ |a Duran, Imanol
|0 0000-0001-6615-3788
|b 0
245 _ _ |a Detection of senescence using machine learning algorithms based on nuclear features.
260 _ _ |a [London]
|c 2024
|b Nature Publishing Group UK
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1712310294_10719
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Cellular senescence is a stress response with broad pathophysiological implications. Senotherapies can induce senescence to treat cancer or eliminate senescent cells to ameliorate ageing and age-related pathologies. However, the success of senotherapies is limited by the lack of reliable ways to identify senescence. Here, we use nuclear morphology features of senescent cells to devise machine-learning classifiers that accurately predict senescence induced by diverse stressors in different cell types and tissues. As a proof-of-principle, we use these senescence classifiers to characterise senolytics and to screen for drugs that selectively induce senescence in cancer cells but not normal cells. Moreover, a tissue senescence score served to assess the efficacy of senolytic drugs and identified senescence in mouse models of liver cancer initiation, ageing, and fibrosis, and in patients with fatty liver disease. Thus, senescence classifiers can help to detect pathophysiological senescence and to discover and validate potential senotherapies.
536 _ _ |a 314 - Immunologie und Krebs (POF4-314)
|0 G:(DE-HGF)POF4-314
|c POF4-314
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
700 1 _ |a Pombo, Joaquim
|b 1
700 1 _ |a Sun, Bin
|b 2
700 1 _ |a Gallage, Suchira Upeksha
|0 P:(DE-He78)c3b4d9cf232a212cd5dc05d94e1a91fc
|b 3
|u dkfz
700 1 _ |a Kudo, Hiromi
|b 4
700 1 _ |a McHugh, Domhnall
|b 5
700 1 _ |a Bousset, Laura
|0 0000-0002-5339-3173
|b 6
700 1 _ |a Barragan Avila, Jose Efren
|0 P:(DE-He78)04c93dc33b8f0bc5a746841c998f4018
|b 7
|u dkfz
700 1 _ |a Forlano, Roberta
|0 0000-0003-4746-7065
|b 8
700 1 _ |a Manousou, Pinelopi
|b 9
700 1 _ |a Heikenwalder, Mathias
|0 P:(DE-He78)66ed2d4ec9bc11d29b87ac006adf85e5
|b 10
|u dkfz
700 1 _ |a Withers, Dominic J
|0 0000-0002-8009-7521
|b 11
700 1 _ |a Vernia, Santiago
|0 0000-0001-6728-5555
|b 12
700 1 _ |a Goldin, Robert D
|0 0000-0001-5184-4519
|b 13
700 1 _ |a Gil, Jesús
|0 0000-0002-4303-6260
|b 14
773 _ _ |a 10.1038/s41467-024-45421-w
|g Vol. 15, no. 1, p. 1041
|0 PERI:(DE-600)2553671-0
|n 1
|p 1041
|t Nature Communications
|v 15
|y 2024
|x 2041-1723
856 4 _ |u https://inrepo02.dkfz.de/record/287620/files/s41467-024-45421-w.pdf
856 4 _ |u https://inrepo02.dkfz.de/record/287620/files/s41467-024-45421-w.pdf?subformat=pdfa
|x pdfa
909 C O |p VDB
|o oai:inrepo02.dkfz.de:287620
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 3
|6 P:(DE-He78)c3b4d9cf232a212cd5dc05d94e1a91fc
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 7
|6 P:(DE-He78)04c93dc33b8f0bc5a746841c998f4018
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 10
|6 P:(DE-He78)66ed2d4ec9bc11d29b87ac006adf85e5
913 1 _ |a DE-HGF
|b Gesundheit
|l Krebsforschung
|1 G:(DE-HGF)POF4-310
|0 G:(DE-HGF)POF4-314
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Immunologie und Krebs
|x 0
914 1 _ |y 2024
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b NAT COMMUN : 2022
|d 2023-08-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-08-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-08-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0320
|2 StatID
|b PubMed Central
|d 2023-08-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2023-05-02T09:09:09Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2023-05-02T09:09:09Z
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Peer review
|d 2023-05-02T09:09:09Z
915 _ _ |a Creative Commons Attribution CC BY (No Version)
|0 LIC:(DE-HGF)CCBYNV
|2 V:(DE-HGF)
|b DOAJ
|d 2023-05-02T09:09:09Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-08-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2023-08-29
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2023-08-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-08-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2023-08-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2023-08-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1060
|2 StatID
|b Current Contents - Agriculture, Biology and Environmental Sciences
|d 2023-08-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1040
|2 StatID
|b Zoological Record
|d 2023-08-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2023-08-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2023-08-29
915 _ _ |a IF >= 15
|0 StatID:(DE-HGF)9915
|2 StatID
|b NAT COMMUN : 2022
|d 2023-08-29
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2023-08-29
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2023-08-29
920 1 _ |0 I:(DE-He78)F180-20160331
|k F180
|l Chronische Entzündung und Krebs
|x 0
920 1 _ |0 I:(DE-He78)D440-20160331
|k D440
|l Chronische Entzündung und Krebs
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)F180-20160331
980 _ _ |a I:(DE-He78)D440-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21