001     287630
005     20250815105346.0
024 7 _ |a 10.1016/j.heliyon.2024.e24975
|2 doi
024 7 _ |a pmid:38317984
|2 pmid
024 7 _ |a pmc:PMC10839612
|2 pmc
024 7 _ |a altmetric:158655425
|2 altmetric
037 _ _ |a DKFZ-2024-00284
041 _ _ |a English
082 _ _ |a 000
100 1 _ |a Harvey, Calum
|b 0
245 _ _ |a Rare and common genetic determinants of mitochondrial function determine severity but not risk of amyotrophic lateral sclerosis.
260 _ _ |a London [u.a.]
|c 2024
|b Elsevier
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1707228337_20623
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease involving selective vulnerability of energy-intensive motor neurons (MNs). It has been unclear whether mitochondrial function is an upstream driver or a downstream modifier of neurotoxicity. We separated upstream genetic determinants of mitochondrial function, including genetic variation within the mitochondrial genome or autosomes; from downstream changeable factors including mitochondrial DNA copy number (mtCN). Across three cohorts including 6,437 ALS patients, we discovered that a set of mitochondrial haplotypes, chosen because they are linked to measurements of mitochondrial function, are a determinant of ALS survival following disease onset, but do not modify ALS risk. One particular haplotype appeared to be neuroprotective and was significantly over-represented in two cohorts of long-surviving ALS patients. Causal inference for mitochondrial function was achievable using mitochondrial haplotypes, but not autosomal SNPs in traditional Mendelian randomization (MR). Furthermore, rare loss-of-function genetic variants within, and reduced MN expression of, ACADM and DNA2 lead to ∼50 % shorter ALS survival; both proteins are implicated in mitochondrial function. Both mtCN and cellular vulnerability are linked to DNA2 function in ALS patient-derived neurons. Finally, MtCN responds dynamically to the onset of ALS independently of mitochondrial haplotype, and is correlated with disease severity. We conclude that, based on the genetic measures we have employed, mitochondrial function is a therapeutic target for amelioration of disease severity but not prevention of ALS.
536 _ _ |a 311 - Zellbiologie und Tumorbiologie (POF4-311)
|0 G:(DE-HGF)POF4-311
|c POF4-311
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
700 1 _ |a Weinreich, Marcel
|0 P:(DE-He78)74b9c8e36d19d91fcd9485c70a038d13
|b 1
|u dkfz
700 1 _ |a Lee, James A K
|b 2
700 1 _ |a Shaw, Allan C
|b 3
700 1 _ |a Ferraiuolo, Laura
|b 4
700 1 _ |a Mortiboys, Heather
|b 5
700 1 _ |a Zhang, Sai
|b 6
700 1 _ |a Hop, Paul J
|b 7
700 1 _ |a Zwamborn, Ramona A J
|b 8
700 1 _ |a van Eijk, Kristel
|b 9
700 1 _ |a Julian, Thomas H
|b 10
700 1 _ |a Moll, Tobias
|b 11
700 1 _ |a Iacoangeli, Alfredo
|b 12
700 1 _ |a Al Khleifat, Ahmad
|b 13
700 1 _ |a Quinn, John P
|b 14
700 1 _ |a Pfaff, Abigail L
|b 15
700 1 _ |a Kõks, Sulev
|b 16
700 1 _ |a Poulton, Joanna
|b 17
700 1 _ |a Battle, Stephanie L
|b 18
700 1 _ |a Arking, Dan E
|b 19
700 1 _ |a Snyder, Michael P
|b 20
700 1 _ |a Consortium, Project MinE ALS Sequencing
|b 21
|e Collaboration Author
700 1 _ |a Veldink, Jan H
|b 22
700 1 _ |a Kenna, Kevin P
|b 23
700 1 _ |a Shaw, Pamela J
|b 24
700 1 _ |a Cooper-Knock, Johnathan
|b 25
773 _ _ |a 10.1016/j.heliyon.2024.e24975
|g Vol. 10, no. 3, p. e24975 -
|0 PERI:(DE-600)2835763-2
|n 3
|p e24975
|t Heliyon
|v 10
|y 2024
|x 2405-8440
856 4 _ |u https://inrepo02.dkfz.de/record/287630/files/1-s2.0-S2405844024010065-main.pdf
856 4 _ |u https://inrepo02.dkfz.de/record/287630/files/1-s2.0-S2405844024010065-main.pdf?subformat=pdfa
|x pdfa
909 C O |o oai:inrepo02.dkfz.de:287630
|p VDB
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 1
|6 P:(DE-He78)74b9c8e36d19d91fcd9485c70a038d13
913 1 _ |a DE-HGF
|b Gesundheit
|l Krebsforschung
|1 G:(DE-HGF)POF4-310
|0 G:(DE-HGF)POF4-311
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Zellbiologie und Tumorbiologie
|x 0
914 1 _ |y 2024
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b HELIYON : 2022
|d 2023-10-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-10-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-10-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0320
|2 StatID
|b PubMed Central
|d 2023-10-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2023-04-12T14:51:11Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2023-04-12T14:51:11Z
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Anonymous peer review
|d 2023-04-12T14:51:11Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-10-27
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2023-10-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-10-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1040
|2 StatID
|b Zoological Record
|d 2023-10-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2023-10-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2023-10-27
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2023-10-27
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2023-10-27
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2023-10-27
920 1 _ |0 I:(DE-He78)A230-20160331
|k A230
|l A230 Klinische Neurobiologie
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)A230-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21