001     287641
005     20240301121609.0
024 7 _ |a 10.1159/000535025
|2 doi
024 7 _ |a pmid:38035560
|2 pmid
024 7 _ |a pmc:PMC10836959
|2 pmc
024 7 _ |a 0042-1138
|2 ISSN
024 7 _ |a 1423-0399
|2 ISSN
037 _ _ |a DKFZ-2024-00285
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a Krebs, Markus
|b 0
245 _ _ |a Metformin Regulates the miR-205/VEGFA Axis in Renal Cell Carcinoma Cells: Exploring a Clinical Synergism with Tyrosine Kinase Inhibitors.
260 _ _ |a Basel
|c 2024
|b Karger
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1707307561_6045
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Metformin (MF) intake could be associated with a favorable outcome in sunitinib (SUT)- and axitinib (AX)-treated clear cell renal cell carcinoma (ccRCC) patients. Functionally, MF induces miR-205, a microRNA serving as a tumor suppressor in several cancers.Real-time quantitative PCR, viability assays, and Western blotting analyzed MF and SUT/AX effects in RCC4 and 786-O cells. A tetracycline-inducible overexpression model was used to study the role of miR-205 and its known target gene, VEGFA. We analyzed miR-205 and VEGFA within a public and an in-house ccRCC cohort. Human umbilical vein endothelial cell (HUVEC) sprouting assays examined miR-205 effects on angiogenesis initiation. To determine the influence of the von Hippel-Lindau tumor suppressor (VHL), we examined VHLwt reexpressing RCC4 and 786-O cells.Viability assays confirmed a sensitizing effect of MF toward SUT/AX in RCC4 and 786-O cells. Overexpression of miR-205 diminished VEGFA expression - as did treatment with MF. Tumor tissue displayed a downregulation of miR-205 and an upregulation of VEGFA. Accordingly, miR-205 caused less and shorter vessel sprouts in HUVEC assays. Finally, VHLwt-expressing RCC4 and 786-O cells displayed higher miR-205 and lower VEGFA levels.Our results support the protective role of MF in ccRCC and offer functional insights into the clinical synergism with tyrosine kinase inhibitors.
536 _ _ |a 311 - Zellbiologie und Tumorbiologie (POF4-311)
|0 G:(DE-HGF)POF4-311
|c POF4-311
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
650 _ 7 |a Angiogenesis
|2 Other
650 _ 7 |a Kidney cancer
|2 Other
650 _ 7 |a Metformin
|2 Other
650 _ 7 |a MicroRNA
|2 Other
650 _ 7 |a Tyrosine kinase inhibitor
|2 Other
650 _ 7 |a Tyrosine Kinase Inhibitors
|2 NLM Chemicals
650 _ 7 |a Metformin
|0 9100L32L2N
|2 NLM Chemicals
650 _ 7 |a MicroRNAs
|2 NLM Chemicals
650 _ 7 |a Sunitinib
|0 V99T50803M
|2 NLM Chemicals
650 _ 7 |a VEGFA protein, human
|2 NLM Chemicals
650 _ 7 |a Vascular Endothelial Growth Factor A
|2 NLM Chemicals
650 _ 7 |a MIRN205 microRNA, human
|2 NLM Chemicals
650 _ 2 |a Humans
|2 MeSH
650 _ 2 |a Carcinoma, Renal Cell: drug therapy
|2 MeSH
650 _ 2 |a Carcinoma, Renal Cell: genetics
|2 MeSH
650 _ 2 |a Carcinoma, Renal Cell: pathology
|2 MeSH
650 _ 2 |a Kidney Neoplasms: drug therapy
|2 MeSH
650 _ 2 |a Kidney Neoplasms: genetics
|2 MeSH
650 _ 2 |a Kidney Neoplasms: pathology
|2 MeSH
650 _ 2 |a Tyrosine Kinase Inhibitors
|2 MeSH
650 _ 2 |a Metformin: pharmacology
|2 MeSH
650 _ 2 |a Cell Line, Tumor
|2 MeSH
650 _ 2 |a MicroRNAs: genetics
|2 MeSH
650 _ 2 |a Sunitinib: pharmacology
|2 MeSH
650 _ 2 |a Gene Expression Regulation, Neoplastic
|2 MeSH
650 _ 2 |a Cell Proliferation: genetics
|2 MeSH
650 _ 2 |a Vascular Endothelial Growth Factor A: metabolism
|2 MeSH
700 1 _ |a Kotlyar, Mischa J
|b 1
700 1 _ |a Fahl, Julian
|b 2
700 1 _ |a Janaki Raman, Sudha
|b 3
700 1 _ |a Röhrig, Florian
|b 4
700 1 _ |a Marquardt, André
|b 5
700 1 _ |a Kübler, Hubert
|b 6
700 1 _ |a Kneitz, Burkhard
|b 7
700 1 _ |a Schulze, Almut
|0 P:(DE-He78)94ae391f53fb9285e1b68f9930615af1
|b 8
|u dkfz
700 1 _ |a Kalogirou, Charis
|b 9
773 _ _ |a 10.1159/000535025
|g Vol. 108, no. 1, p. 49 - 59
|0 PERI:(DE-600)1464417-4
|n 1
|p 49 - 59
|t Urologia internationalis
|v 108
|y 2024
|x 0042-1138
909 C O |o oai:inrepo02.dkfz.de:287641
|p VDB
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 8
|6 P:(DE-He78)94ae391f53fb9285e1b68f9930615af1
913 1 _ |a DE-HGF
|b Gesundheit
|l Krebsforschung
|1 G:(DE-HGF)POF4-310
|0 G:(DE-HGF)POF4-311
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Zellbiologie und Tumorbiologie
|x 0
914 1 _ |y 2024
915 _ _ |a National-Konsortium
|0 StatID:(DE-HGF)0430
|2 StatID
|d 2023-10-21
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-10-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-10-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0320
|2 StatID
|b PubMed Central
|d 2023-10-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-10-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2023-10-21
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2023-10-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-10-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2023-10-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2023-10-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1110
|2 StatID
|b Current Contents - Clinical Medicine
|d 2023-10-21
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b UROL INT : 2022
|d 2023-10-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2023-10-21
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2023-10-21
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2023-10-21
920 1 _ |0 I:(DE-He78)A410-20160331
|k A410
|l Metabolismus und Microenvironment
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)A410-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21