000287642 001__ 287642
000287642 005__ 20240301121609.0
000287642 0247_ $$2doi$$a10.2340/actadv.v104.13381
000287642 0247_ $$2pmid$$apmid:38323498
000287642 0247_ $$2ISSN$$a0001-5555
000287642 0247_ $$2ISSN$$a0365-8341
000287642 0247_ $$2ISSN$$a1651-2057
000287642 037__ $$aDKFZ-2024-00286
000287642 041__ $$aEnglish
000287642 082__ $$a610
000287642 1001_ $$aLonsdorf, Anke S$$b0
000287642 245__ $$aDifferential Immunoexpression of Inhibitory Immune Checkpoint Molecules and Clinicopathological Correlates in Keratoacanthoma, Primary Cutaneous Squamous Cell Carcinoma and Metastases.
000287642 260__ $$aUppsala$$bActa Dermato-Venereologica$$c2024
000287642 3367_ $$2DRIVER$$aarticle
000287642 3367_ $$2DataCite$$aOutput Types/Journal article
000287642 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1707378818_26964
000287642 3367_ $$2BibTeX$$aARTICLE
000287642 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000287642 3367_ $$00$$2EndNote$$aJournal Article
000287642 520__ $$aBeyond established anti-programmed cell death protein 1/programmed cell death ligand 1 immunotherapy, T-cell immunoreceptor with immunoglobulin and immunoreceptor tyrosine-based inhibition motif domain (TIGIT) and its ligand CD155 are promising novel inhibitory immune checkpoint targets in human malignancies. Yet, in cutaneous squamous cell carcinoma, evidence on the collective expression patterns of these inhibitory immune checkpoints is scarce. Complete tumour sections of 36 cutaneous squamous cell carcinoma, 5 cutaneous metastases and 9 keratoacanthomas, a highly-differentiated, squamoproliferative tumour, with disparately benign biologic behaviour, were evaluated by immunohistochemistry for expression of programmed cell death ligand 1 (Tumor Proportion Score, Immune Cell Score), TIGIT, CD155 and CD8+ immune infiltrates. Unlike keratoacanthomas, cutaneous squamous cell carcinoma displayed a strong positive correlation of programmed cell death ligand 1 Tumor Proportion Score and CD115 expression (p < 0.001) with significantly higher programmed cell death ligand 1 Tumor Proportion Score (p < 0.001) and CD155 expression (p < 0.01) in poorly differentiated G3-cutaneous squamous cell carcinoma compared with keratoacanthomas. TIGIT+ infiltrates were significantly increased in programmed cell death ligand 1 Immune Cell Score positive primary tumours (p = 0.05). Yet, a strong positive correlation of TIGIT expression with CD8+ infiltrates was only detected in cutaneous squamous cell carcinoma (p < 0.01), but not keratoacanthomas. Providing a comprehensive overview on the collective landscape of inhibitory immune checkpoint expression, this study reveals associations of novel inhibitory immune checkpoint with CD8+ immune infiltrates and tumour differentiation and highlights the TIGIT/CD155 axis as a potential new target for cutaneous squamous cell carcinoma immunotherapy.
000287642 536__ $$0G:(DE-HGF)POF4-313$$a313 - Krebsrisikofaktoren und Prävention (POF4-313)$$cPOF4-313$$fPOF IV$$x0
000287642 588__ $$aDataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
000287642 7001_ $$0P:(DE-He78)92820b4867c955a04f642707ecf35b40$$aEdelmann, Dominic$$b1$$udkfz
000287642 7001_ $$aAlbrecht, Thomas$$b2
000287642 7001_ $$aBrobeil, Alexander$$b3
000287642 7001_ $$aLabrenz, Jannik$$b4
000287642 7001_ $$aJohanning, Moritz$$b5
000287642 7001_ $$aSchlenk, Richard F$$b6
000287642 7001_ $$aGoeppert, Benjamin$$b7
000287642 7001_ $$aEnk, Alexander H$$b8
000287642 7001_ $$aToberer, Ferdinand$$b9
000287642 773__ $$0PERI:(DE-600)1492617-9$$a10.2340/actadv.v104.13381$$gVol. 104, p. adv13381 -$$padv13381 -$$tActa dermato-venereologica$$v104$$x0001-5555$$y2024
000287642 909CO $$ooai:inrepo02.dkfz.de:287642$$pVDB
000287642 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)92820b4867c955a04f642707ecf35b40$$aDeutsches Krebsforschungszentrum$$b1$$kDKFZ
000287642 9131_ $$0G:(DE-HGF)POF4-313$$1G:(DE-HGF)POF4-310$$2G:(DE-HGF)POF4-300$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vKrebsrisikofaktoren und Prävention$$x0
000287642 9141_ $$y2024
000287642 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bACTA DERM-VENEREOL : 2022$$d2023-08-25
000287642 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-08-25
000287642 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-08-25
000287642 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central$$d2023-08-25
000287642 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2023-01-19T09:14:05Z
000287642 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2023-01-19T09:14:05Z
000287642 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Anonymous peer review$$d2023-01-19T09:14:05Z
000287642 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2023-08-25
000287642 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2023-08-25
000287642 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-08-25
000287642 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-08-25
000287642 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-08-25
000287642 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2023-08-25
000287642 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-08-25
000287642 915__ $$0StatID:(DE-HGF)1110$$2StatID$$aDBCoverage$$bCurrent Contents - Clinical Medicine$$d2023-08-25
000287642 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2023-08-25
000287642 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2023-08-25
000287642 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2023-08-25
000287642 9201_ $$0I:(DE-He78)C060-20160331$$kC060$$lC060 Biostatistik$$x0
000287642 980__ $$ajournal
000287642 980__ $$aVDB
000287642 980__ $$aI:(DE-He78)C060-20160331
000287642 980__ $$aUNRESTRICTED