Home > Publications database > Regression-based Deep-Learning predicts molecular biomarkers from pathology slides. > print |
001 | 288058 | ||
005 | 20241114103748.0 | ||
024 | 7 | _ | |a 10.1038/s41467-024-45589-1 |2 doi |
024 | 7 | _ | |a pmid:38341402 |2 pmid |
024 | 7 | _ | |a pmc:PMC10858881 |2 pmc |
024 | 7 | _ | |a altmetric:159405840 |2 altmetric |
037 | _ | _ | |a DKFZ-2024-00316 |
041 | _ | _ | |a English |
082 | _ | _ | |a 500 |
100 | 1 | _ | |a El Nahhas, Omar S M |0 0000-0002-2542-2117 |b 0 |
245 | _ | _ | |a Regression-based Deep-Learning predicts molecular biomarkers from pathology slides. |
260 | _ | _ | |a [London] |c 2024 |b Nature Publishing Group UK |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1707821760_10360 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a Deep Learning (DL) can predict biomarkers from cancer histopathology. Several clinically approved applications use this technology. Most approaches, however, predict categorical labels, whereas biomarkers are often continuous measurements. We hypothesize that regression-based DL outperforms classification-based DL. Therefore, we develop and evaluate a self-supervised attention-based weakly supervised regression method that predicts continuous biomarkers directly from 11,671 images of patients across nine cancer types. We test our method for multiple clinically and biologically relevant biomarkers: homologous recombination deficiency score, a clinically used pan-cancer biomarker, as well as markers of key biological processes in the tumor microenvironment. Using regression significantly enhances the accuracy of biomarker prediction, while also improving the predictions' correspondence to regions of known clinical relevance over classification. In a large cohort of colorectal cancer patients, regression-based prediction scores provide a higher prognostic value than classification-based scores. Our open-source regression approach offers a promising alternative for continuous biomarker analysis in computational pathology. |
536 | _ | _ | |a 313 - Krebsrisikofaktoren und Prävention (POF4-313) |0 G:(DE-HGF)POF4-313 |c POF4-313 |f POF IV |x 0 |
588 | _ | _ | |a Dataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de |
700 | 1 | _ | |a Loeffler, Chiara M L |b 1 |
700 | 1 | _ | |a Carrero, Zunamys I |b 2 |
700 | 1 | _ | |a van Treeck, Marko |b 3 |
700 | 1 | _ | |a Kolbinger, Fiona R |b 4 |
700 | 1 | _ | |a Hewitt, Katherine J |b 5 |
700 | 1 | _ | |a Muti, Hannah S |b 6 |
700 | 1 | _ | |a Graziani, Mara |0 0000-0003-3456-945X |b 7 |
700 | 1 | _ | |a Zeng, Qinghe |0 0000-0002-1473-8327 |b 8 |
700 | 1 | _ | |a Calderaro, Julien |b 9 |
700 | 1 | _ | |a Ortiz-Brüchle, Nadina |b 10 |
700 | 1 | _ | |a Yuan, Tanwei |0 P:(DE-He78)b9e439a1aa1244925f92d547c0919349 |b 11 |u dkfz |
700 | 1 | _ | |a Hoffmeister, Michael |0 P:(DE-He78)6c5d058b7552d071a7fa4c5e943fff0f |b 12 |u dkfz |
700 | 1 | _ | |a Brenner, Hermann |0 P:(DE-He78)90d5535ff896e70eed81f4a4f6f22ae2 |b 13 |u dkfz |
700 | 1 | _ | |a Brobeil, Alexander |b 14 |
700 | 1 | _ | |a Reis-Filho, Jorge S |0 0000-0003-2969-3173 |b 15 |
700 | 1 | _ | |a Kather, Jakob Nikolas |b 16 |
773 | _ | _ | |a 10.1038/s41467-024-45589-1 |g Vol. 15, no. 1, p. 1253 |0 PERI:(DE-600)2553671-0 |n 1 |p 1253 |t Nature Communications |v 15 |y 2024 |x 2041-1723 |
856 | 4 | _ | |u https://inrepo02.dkfz.de/record/288058/files/s41467-024-45589-1.pdf |
856 | 4 | _ | |u https://inrepo02.dkfz.de/record/288058/files/s41467-024-45589-1.pdf?subformat=pdfa |x pdfa |
909 | C | O | |o oai:inrepo02.dkfz.de:288058 |p VDB |
910 | 1 | _ | |a Deutsches Krebsforschungszentrum |0 I:(DE-588b)2036810-0 |k DKFZ |b 11 |6 P:(DE-He78)b9e439a1aa1244925f92d547c0919349 |
910 | 1 | _ | |a Deutsches Krebsforschungszentrum |0 I:(DE-588b)2036810-0 |k DKFZ |b 12 |6 P:(DE-He78)6c5d058b7552d071a7fa4c5e943fff0f |
910 | 1 | _ | |a Deutsches Krebsforschungszentrum |0 I:(DE-588b)2036810-0 |k DKFZ |b 13 |6 P:(DE-He78)90d5535ff896e70eed81f4a4f6f22ae2 |
913 | 1 | _ | |a DE-HGF |b Gesundheit |l Krebsforschung |1 G:(DE-HGF)POF4-310 |0 G:(DE-HGF)POF4-313 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-300 |4 G:(DE-HGF)POF |v Krebsrisikofaktoren und Prävention |x 0 |
914 | 1 | _ | |y 2024 |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b NAT COMMUN : 2022 |d 2023-08-29 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2023-08-29 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2023-08-29 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0320 |2 StatID |b PubMed Central |d 2023-08-29 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0501 |2 StatID |b DOAJ Seal |d 2023-05-02T09:09:09Z |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0500 |2 StatID |b DOAJ |d 2023-05-02T09:09:09Z |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b DOAJ : Peer review |d 2023-05-02T09:09:09Z |
915 | _ | _ | |a Creative Commons Attribution CC BY (No Version) |0 LIC:(DE-HGF)CCBYNV |2 V:(DE-HGF) |b DOAJ |d 2023-05-02T09:09:09Z |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2023-08-29 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1050 |2 StatID |b BIOSIS Previews |d 2023-08-29 |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2023-08-29 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2023-08-29 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1030 |2 StatID |b Current Contents - Life Sciences |d 2023-08-29 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1190 |2 StatID |b Biological Abstracts |d 2023-08-29 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1060 |2 StatID |b Current Contents - Agriculture, Biology and Environmental Sciences |d 2023-08-29 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1040 |2 StatID |b Zoological Record |d 2023-08-29 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2023-08-29 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |d 2023-08-29 |
915 | _ | _ | |a IF >= 15 |0 StatID:(DE-HGF)9915 |2 StatID |b NAT COMMUN : 2022 |d 2023-08-29 |
915 | _ | _ | |a Article Processing Charges |0 StatID:(DE-HGF)0561 |2 StatID |d 2023-08-29 |
915 | _ | _ | |a Fees |0 StatID:(DE-HGF)0700 |2 StatID |d 2023-08-29 |
920 | 1 | _ | |0 I:(DE-He78)C070-20160331 |k C070 |l C070 Klinische Epidemiologie und Alternf. |x 0 |
920 | 1 | _ | |0 I:(DE-He78)C120-20160331 |k C120 |l Präventive Onkologie |x 1 |
920 | 1 | _ | |0 I:(DE-He78)HD01-20160331 |k HD01 |l DKTK HD zentral |x 2 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a I:(DE-He78)C070-20160331 |
980 | _ | _ | |a I:(DE-He78)C120-20160331 |
980 | _ | _ | |a I:(DE-He78)HD01-20160331 |
980 | _ | _ | |a UNRESTRICTED |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|