001     288084
005     20250326132557.0
024 7 _ |a 10.1038/s41592-023-02150-0
|2 doi
024 7 _ |a pmid:38347140
|2 pmid
024 7 _ |a 1548-7091
|2 ISSN
024 7 _ |a 1548-7105
|2 ISSN
024 7 _ |a altmetric:159461768
|2 altmetric
037 _ _ |a DKFZ-2024-00338
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a Reinke, Annika
|0 P:(DE-He78)97e904f47dab556a77c0149cd0002591
|b 0
|e First author
245 _ _ |a Understanding metric-related pitfalls in image analysis validation.
260 _ _ |a London [u.a.]
|c 2024
|b Nature Publishing Group
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1710237361_32556
|2 PUB:(DE-HGF)
|x Review Article
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a #EA:E130#LA:E130#LA:E290#
520 _ _ |a Validation metrics are key for tracking scientific progress and bridging the current chasm between artificial intelligence research and its translation into practice. However, increasing evidence shows that, particularly in image analysis, metrics are often chosen inadequately. Although taking into account the individual strengths, weaknesses and limitations of validation metrics is a critical prerequisite to making educated choices, the relevant knowledge is currently scattered and poorly accessible to individual researchers. Based on a multistage Delphi process conducted by a multidisciplinary expert consortium as well as extensive community feedback, the present work provides a reliable and comprehensive common point of access to information on pitfalls related to validation metrics in image analysis. Although focused on biomedical image analysis, the addressed pitfalls generalize across application domains and are categorized according to a newly created, domain-agnostic taxonomy. The work serves to enhance global comprehension of a key topic in image analysis validation.
536 _ _ |a 315 - Bildgebung und Radioonkologie (POF4-315)
|0 G:(DE-HGF)POF4-315
|c POF4-315
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
700 1 _ |a Tizabi, Minu Dietlinde
|0 P:(DE-He78)26651d9aa10255ad4f35610a56aa91e8
|b 1
|e First author
700 1 _ |a Baumgartner, Michael
|0 P:(DE-He78)6ae68adec0915a4ae2d58aff814aaceb
|b 2
700 1 _ |a Eisenmann, Matthias
|0 P:(DE-He78)c9d6245b17f0ab26eeed345cb00d3359
|b 3
700 1 _ |a Heckmann-Nötzel, Doreen
|0 P:(DE-He78)98dd16a42af0888dd129e1cd2ee2766a
|b 4
700 1 _ |a Kavur, Ali Emre
|0 P:(DE-He78)64296d0922a2da68074f5de2ccf74487
|b 5
700 1 _ |a Rädsch, Tim
|0 P:(DE-He78)683f71d452c83a7f5ec62969c6012466
|b 6
700 1 _ |a Sudre, Carole H
|b 7
700 1 _ |a Acion, Laura
|0 0000-0001-5213-6012
|b 8
700 1 _ |a Antonelli, Michela
|0 0000-0002-3005-4523
|b 9
700 1 _ |a Arbel, Tal
|0 0000-0001-8870-3007
|b 10
700 1 _ |a Bakas, Spyridon
|0 0000-0001-8734-6482
|b 11
700 1 _ |a Benis, Arriel
|0 0000-0002-9125-8300
|b 12
700 1 _ |a Büttner, Florian
|0 P:(DE-He78)fdeeec93551e8f3bad68db88a1130c5d
|b 13
|u dkfz
700 1 _ |a Cardoso, M Jorge
|0 0000-0003-1284-2558
|b 14
700 1 _ |a Cheplygina, Veronika
|b 15
700 1 _ |a Chen, Jianxu
|0 0000-0002-8500-1357
|b 16
700 1 _ |a Christodoulou, Evangelia
|0 P:(DE-He78)8da2eca0bc6341c8681c317fe2b8e27b
|b 17
700 1 _ |a Cimini, Beth A
|0 0000-0001-9640-9318
|b 18
700 1 _ |a Farahani, Keyvan
|b 19
700 1 _ |a Ferrer, Luciana
|b 20
700 1 _ |a Galdran, Adrian
|b 21
700 1 _ |a van Ginneken, Bram
|b 22
700 1 _ |a Glocker, Ben
|0 0000-0002-4897-9356
|b 23
700 1 _ |a Godau, Patrick
|0 P:(DE-He78)77a2a5b07dcbd46277a18a32372ea154
|b 24
700 1 _ |a Hashimoto, Daniel A
|0 0000-0003-4725-3104
|b 25
700 1 _ |a Hoffman, Michael M
|0 0000-0002-4517-1562
|b 26
700 1 _ |a Huisman, Merel
|b 27
700 1 _ |a Isensee, Fabian
|0 P:(DE-He78)7ea9af59d03ec7deb982a0e0562358fa
|b 28
700 1 _ |a Jannin, Pierre
|0 0000-0002-7415-071X
|b 29
700 1 _ |a Kahn, Charles E
|0 0000-0002-6654-7434
|b 30
700 1 _ |a Kainmueller, Dagmar
|b 31
700 1 _ |a Kainz, Bernhard
|b 32
700 1 _ |a Karargyris, Alexandros
|0 0000-0002-1930-3410
|b 33
700 1 _ |a Kleesiek, Jens
|b 34
700 1 _ |a Kofler, Florian
|b 35
700 1 _ |a Kooi, Thijs
|b 36
700 1 _ |a Kopp-Schneider, Annette
|0 P:(DE-He78)bb6a7a70f976eb8df1769944bf913596
|b 37
700 1 _ |a Kozubek, Michal
|0 0000-0001-7902-589X
|b 38
700 1 _ |a Kreshuk, Anna
|0 0000-0003-1334-6388
|b 39
700 1 _ |a Kurc, Tahsin
|b 40
700 1 _ |a Landman, Bennett A
|0 0000-0001-5733-2127
|b 41
700 1 _ |a Litjens, Geert
|0 0000-0003-1554-1291
|b 42
700 1 _ |a Madani, Amin
|b 43
700 1 _ |a Maier-Hein, Klaus
|0 P:(DE-He78)33c74005e1ce56f7025c4f6be15321b3
|b 44
700 1 _ |a Martel, Anne L
|0 0000-0003-1375-5501
|b 45
700 1 _ |a Meijering, Erik
|0 0000-0001-8015-8358
|b 46
700 1 _ |a Menze, Bjoern
|0 0000-0003-4136-5690
|b 47
700 1 _ |a Moons, Karel G M
|b 48
700 1 _ |a Müller, Henning
|0 0000-0001-6800-9878
|b 49
700 1 _ |a Nichyporuk, Brennan
|0 0009-0006-8087-6089
|b 50
700 1 _ |a Nickel, Felix
|b 51
700 1 _ |a Petersen, Jens
|b 52
700 1 _ |a Rafelski, Susanne M
|0 0000-0002-1399-5970
|b 53
700 1 _ |a Rajpoot, Nasir
|0 0000-0001-6760-1271
|b 54
700 1 _ |a Reyes, Mauricio
|b 55
700 1 _ |a Riegler, Michael A
|0 0000-0002-3153-2064
|b 56
700 1 _ |a Rieke, Nicola
|0 0000-0003-0241-9334
|b 57
700 1 _ |a Saez-Rodriguez, Julio
|b 58
700 1 _ |a Sánchez, Clara I
|b 59
700 1 _ |a Shetty, Shravya
|b 60
700 1 _ |a Summers, Ronald M
|0 0000-0001-8081-7376
|b 61
700 1 _ |a Taha, Abdel A
|b 62
700 1 _ |a Tiulpin, Aleksei
|0 0000-0002-7852-4141
|b 63
700 1 _ |a Tsaftaris, Sotirios A
|b 64
700 1 _ |a Van Calster, Ben
|b 65
700 1 _ |a Varoquaux, Gaël
|0 0000-0003-1076-5122
|b 66
700 1 _ |a Yaniv, Ziv R
|0 0000-0003-0315-7727
|b 67
700 1 _ |a Jäger, Paul
|0 P:(DE-He78)04a0b5a49db132d8f00cee326cb743ca
|b 68
|e Last author
700 1 _ |a Maier-Hein, Lena
|0 P:(DE-He78)26a1176cd8450660333a012075050072
|b 69
|e Last author
773 _ _ |a 10.1038/s41592-023-02150-0
|g Vol. 21, no. 2, p. 182 - 194
|0 PERI:(DE-600)2163081-1
|n 2
|p 182 - 194
|t Nature methods
|v 21
|y 2024
|x 1548-7091
856 4 _ |u https://inrepo02.dkfz.de/record/288084/files/s41592-023-02150-0.pdf
856 4 _ |u https://inrepo02.dkfz.de/record/288084/files/s41592-023-02150-0.pdf?subformat=pdfa
|x pdfa
909 C O |p VDB
|o oai:inrepo02.dkfz.de:288084
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 0
|6 P:(DE-He78)97e904f47dab556a77c0149cd0002591
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 1
|6 P:(DE-He78)26651d9aa10255ad4f35610a56aa91e8
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 2
|6 P:(DE-He78)6ae68adec0915a4ae2d58aff814aaceb
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 3
|6 P:(DE-He78)c9d6245b17f0ab26eeed345cb00d3359
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 4
|6 P:(DE-He78)98dd16a42af0888dd129e1cd2ee2766a
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 5
|6 P:(DE-He78)64296d0922a2da68074f5de2ccf74487
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 6
|6 P:(DE-He78)683f71d452c83a7f5ec62969c6012466
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 13
|6 P:(DE-He78)fdeeec93551e8f3bad68db88a1130c5d
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 17
|6 P:(DE-He78)8da2eca0bc6341c8681c317fe2b8e27b
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 24
|6 P:(DE-He78)77a2a5b07dcbd46277a18a32372ea154
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 28
|6 P:(DE-He78)7ea9af59d03ec7deb982a0e0562358fa
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 37
|6 P:(DE-He78)bb6a7a70f976eb8df1769944bf913596
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 44
|6 P:(DE-He78)33c74005e1ce56f7025c4f6be15321b3
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 68
|6 P:(DE-He78)04a0b5a49db132d8f00cee326cb743ca
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 69
|6 P:(DE-He78)26a1176cd8450660333a012075050072
913 1 _ |a DE-HGF
|b Gesundheit
|l Krebsforschung
|1 G:(DE-HGF)POF4-310
|0 G:(DE-HGF)POF4-315
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Bildgebung und Radioonkologie
|x 0
914 1 _ |y 2024
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2023-08-29
|w ger
915 _ _ |a DEAL Nature
|0 StatID:(DE-HGF)3003
|2 StatID
|d 2023-08-29
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-08-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-08-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-08-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2023-08-29
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2023-08-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-08-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2023-08-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2023-08-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2023-08-29
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b NAT METHODS : 2022
|d 2023-08-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2023-08-29
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2023-08-29
915 _ _ |a IF >= 40
|0 StatID:(DE-HGF)9940
|2 StatID
|b NAT METHODS : 2022
|d 2023-08-29
920 2 _ |0 I:(DE-He78)E130-20160331
|k E130
|l E130 Intelligente Medizinische Systeme
|x 0
920 2 _ |0 I:(DE-He78)E290-20160331
|k E290
|l NWG Interaktives maschinelles Lernen
|x 1
920 1 _ |0 I:(DE-He78)E130-20160331
|k E130
|l E130 Intelligente Medizinische Systeme
|x 0
920 1 _ |0 I:(DE-He78)E230-20160331
|k E230
|l E230 Medizinische Bildverarbeitung
|x 1
920 1 _ |0 I:(DE-He78)C060-20160331
|k C060
|l C060 Biostatistik
|x 2
920 1 _ |0 I:(DE-He78)E290-20160331
|k E290
|l NWG Interaktives maschinelles Lernen
|x 3
920 1 _ |0 I:(DE-He78)FM01-20160331
|k FM01
|l DKTK Koordinierungsstelle Frankfurt
|x 4
920 0 _ |0 I:(DE-He78)E130-20160331
|k E130
|l E130 Intelligente Medizinische Systeme
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)E130-20160331
980 _ _ |a I:(DE-He78)E230-20160331
980 _ _ |a I:(DE-He78)C060-20160331
980 _ _ |a I:(DE-He78)E290-20160331
980 _ _ |a I:(DE-He78)FM01-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21