000288132 001__ 288132
000288132 005__ 20250523131852.0
000288132 0247_ $$2doi$$a10.1002/sim.10012
000288132 0247_ $$2pmid$$apmid:38356231
000288132 0247_ $$2ISSN$$a0277-6715
000288132 0247_ $$2ISSN$$a1097-0258
000288132 0247_ $$2altmetric$$aaltmetric:159545493
000288132 037__ $$aDKFZ-2024-00353
000288132 041__ $$aEnglish
000288132 082__ $$a610
000288132 1001_ $$0P:(DE-He78)0d054b6843ace36d1c965b6cb938d1c9$$aSchreck, Nicholas$$b0$$eFirst author$$udkfz
000288132 245__ $$aStatistical plasmode simulations-Potentials, challenges and recommendations.
000288132 260__ $$aChichester [u.a.]$$bWiley$$c2024
000288132 3367_ $$2DRIVER$$aarticle
000288132 3367_ $$2DataCite$$aOutput Types/Journal article
000288132 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1713534919_17806
000288132 3367_ $$2BibTeX$$aARTICLE
000288132 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000288132 3367_ $$00$$2EndNote$$aJournal Article
000288132 500__ $$aTUTORIAL IN BIOSTATISTICS /  #EA:C060#LA:C060# / 2024 Apr 30;43(9):1804-1825
000288132 520__ $$aStatistical data simulation is essential in the development of statistical models and methods as well as in their performance evaluation. To capture complex data structures, in particular for high-dimensional data, a variety of simulation approaches have been introduced including parametric and the so-called plasmode simulations. While there are concerns about the realism of parametrically simulated data, it is widely claimed that plasmodes come very close to reality with some aspects of the 'truth' known. However, there are no explicit guidelines or state-of-the-art on how to perform plasmode data simulations. In the present paper, we first review existing literature and introduce the concept of statistical plasmode simulation. We then discuss advantages and challenges of statistical plasmodes and provide a step-wise procedure for their generation, including key steps to their implementation and reporting. Finally, we illustrate the concept of statistical plasmodes as well as the proposed plasmode generation procedure by means of a public real RNA data set on breast carcinoma patients.
000288132 536__ $$0G:(DE-HGF)POF4-313$$a313 - Krebsrisikofaktoren und Prävention (POF4-313)$$cPOF4-313$$fPOF IV$$x0
000288132 588__ $$aDataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
000288132 650_7 $$2Other$$adata-generating process
000288132 650_7 $$2Other$$aoutcome-generating model
000288132 650_7 $$2Other$$aparametric simulations
000288132 650_7 $$2Other$$aresampling
000288132 650_7 $$2Other$$astatistical plasmodes
000288132 7001_ $$aSlynko, Alla$$b1
000288132 7001_ $$0P:(DE-He78)609d3f1c1420bf59b2332eeab889cb74$$aSaadati, Maral$$b2$$udkfz
000288132 7001_ $$0P:(DE-He78)e15dfa1260625c69d6690a197392a994$$aBenner, Axel$$b3$$eLast author$$udkfz
000288132 773__ $$0PERI:(DE-600)1491221-1$$a10.1002/sim.10012$$gp. sim.10012$$n9$$p1804-1825$$tStatistics in medicine$$v43$$x0277-6715$$y2024
000288132 8564_ $$uhttps://inrepo02.dkfz.de/record/288132/files/Statistics%20in%20Medicine%20-%202024%20-%20Schreck%20-%20Statistical%20plasmode%20simulations%20Potentials%20challenges%20and%20recommendations.pdf
000288132 8564_ $$uhttps://inrepo02.dkfz.de/record/288132/files/Statistics%20in%20Medicine%20-%202024%20-%20Schreck%20-%20Statistical%20plasmode%20simulations%20Potentials%20challenges%20and%20recommendations.pdf?subformat=pdfa$$xpdfa
000288132 909CO $$ooai:inrepo02.dkfz.de:288132$$pVDB
000288132 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)0d054b6843ace36d1c965b6cb938d1c9$$aDeutsches Krebsforschungszentrum$$b0$$kDKFZ
000288132 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)609d3f1c1420bf59b2332eeab889cb74$$aDeutsches Krebsforschungszentrum$$b2$$kDKFZ
000288132 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)e15dfa1260625c69d6690a197392a994$$aDeutsches Krebsforschungszentrum$$b3$$kDKFZ
000288132 9131_ $$0G:(DE-HGF)POF4-313$$1G:(DE-HGF)POF4-310$$2G:(DE-HGF)POF4-300$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vKrebsrisikofaktoren und Prävention$$x0
000288132 9141_ $$y2024
000288132 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2023-08-28$$wger
000288132 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2023-08-28$$wger
000288132 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-08-28
000288132 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-08-28
000288132 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-08-28
000288132 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2023-08-28
000288132 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-08-28
000288132 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-08-28
000288132 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2023-08-28
000288132 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2023-08-28
000288132 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-08-28
000288132 915__ $$0StatID:(DE-HGF)1110$$2StatID$$aDBCoverage$$bCurrent Contents - Clinical Medicine$$d2023-08-28
000288132 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bSTAT MED : 2022$$d2023-08-28
000288132 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2023-08-28
000288132 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2023-08-28
000288132 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2023-08-28
000288132 9202_ $$0I:(DE-He78)C060-20160331$$kC060$$lC060 Biostatistik$$x0
000288132 9201_ $$0I:(DE-He78)C060-20160331$$kC060$$lC060 Biostatistik$$x0
000288132 9200_ $$0I:(DE-He78)C060-20160331$$kC060$$lC060 Biostatistik$$x0
000288132 980__ $$ajournal
000288132 980__ $$aVDB
000288132 980__ $$aI:(DE-He78)C060-20160331
000288132 980__ $$aUNRESTRICTED