001     288132
005     20250523131852.0
024 7 _ |a 10.1002/sim.10012
|2 doi
024 7 _ |a pmid:38356231
|2 pmid
024 7 _ |a 0277-6715
|2 ISSN
024 7 _ |a 1097-0258
|2 ISSN
024 7 _ |a altmetric:159545493
|2 altmetric
037 _ _ |a DKFZ-2024-00353
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a Schreck, Nicholas
|0 P:(DE-He78)0d054b6843ace36d1c965b6cb938d1c9
|b 0
|e First author
|u dkfz
245 _ _ |a Statistical plasmode simulations-Potentials, challenges and recommendations.
260 _ _ |a Chichester [u.a.]
|c 2024
|b Wiley
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1713534919_17806
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a TUTORIAL IN BIOSTATISTICS / #EA:C060#LA:C060# / 2024 Apr 30;43(9):1804-1825
520 _ _ |a Statistical data simulation is essential in the development of statistical models and methods as well as in their performance evaluation. To capture complex data structures, in particular for high-dimensional data, a variety of simulation approaches have been introduced including parametric and the so-called plasmode simulations. While there are concerns about the realism of parametrically simulated data, it is widely claimed that plasmodes come very close to reality with some aspects of the 'truth' known. However, there are no explicit guidelines or state-of-the-art on how to perform plasmode data simulations. In the present paper, we first review existing literature and introduce the concept of statistical plasmode simulation. We then discuss advantages and challenges of statistical plasmodes and provide a step-wise procedure for their generation, including key steps to their implementation and reporting. Finally, we illustrate the concept of statistical plasmodes as well as the proposed plasmode generation procedure by means of a public real RNA data set on breast carcinoma patients.
536 _ _ |a 313 - Krebsrisikofaktoren und Prävention (POF4-313)
|0 G:(DE-HGF)POF4-313
|c POF4-313
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
650 _ 7 |a data-generating process
|2 Other
650 _ 7 |a outcome-generating model
|2 Other
650 _ 7 |a parametric simulations
|2 Other
650 _ 7 |a resampling
|2 Other
650 _ 7 |a statistical plasmodes
|2 Other
700 1 _ |a Slynko, Alla
|b 1
700 1 _ |a Saadati, Maral
|0 P:(DE-He78)609d3f1c1420bf59b2332eeab889cb74
|b 2
|u dkfz
700 1 _ |a Benner, Axel
|0 P:(DE-He78)e15dfa1260625c69d6690a197392a994
|b 3
|e Last author
|u dkfz
773 _ _ |a 10.1002/sim.10012
|g p. sim.10012
|0 PERI:(DE-600)1491221-1
|n 9
|p 1804-1825
|t Statistics in medicine
|v 43
|y 2024
|x 0277-6715
856 4 _ |u https://inrepo02.dkfz.de/record/288132/files/Statistics%20in%20Medicine%20-%202024%20-%20Schreck%20-%20Statistical%20plasmode%20simulations%20Potentials%20challenges%20and%20recommendations.pdf
856 4 _ |u https://inrepo02.dkfz.de/record/288132/files/Statistics%20in%20Medicine%20-%202024%20-%20Schreck%20-%20Statistical%20plasmode%20simulations%20Potentials%20challenges%20and%20recommendations.pdf?subformat=pdfa
|x pdfa
909 C O |p VDB
|o oai:inrepo02.dkfz.de:288132
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 0
|6 P:(DE-He78)0d054b6843ace36d1c965b6cb938d1c9
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 2
|6 P:(DE-He78)609d3f1c1420bf59b2332eeab889cb74
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 3
|6 P:(DE-He78)e15dfa1260625c69d6690a197392a994
913 1 _ |a DE-HGF
|b Gesundheit
|l Krebsforschung
|1 G:(DE-HGF)POF4-310
|0 G:(DE-HGF)POF4-313
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Krebsrisikofaktoren und Prävention
|x 0
914 1 _ |y 2024
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2023-08-28
|w ger
915 _ _ |a DEAL Wiley
|0 StatID:(DE-HGF)3001
|2 StatID
|d 2023-08-28
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-08-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-08-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-08-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2023-08-28
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2023-08-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-08-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2023-08-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2023-08-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2023-08-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1110
|2 StatID
|b Current Contents - Clinical Medicine
|d 2023-08-28
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b STAT MED : 2022
|d 2023-08-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2023-08-28
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2023-08-28
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2023-08-28
920 2 _ |0 I:(DE-He78)C060-20160331
|k C060
|l C060 Biostatistik
|x 0
920 1 _ |0 I:(DE-He78)C060-20160331
|k C060
|l C060 Biostatistik
|x 0
920 0 _ |0 I:(DE-He78)C060-20160331
|k C060
|l C060 Biostatistik
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)C060-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21