000288151 001__ 288151
000288151 005__ 20250408145424.0
000288151 0247_ $$2doi$$a10.1007/s10334-024-01149-8
000288151 0247_ $$2pmid$$apmid:38366129
000288151 0247_ $$2ISSN$$a0968-5243
000288151 0247_ $$2ISSN$$a1352-8661
000288151 037__ $$aDKFZ-2024-00365
000288151 041__ $$aEnglish
000288151 082__ $$a530
000288151 1001_ $$00000-0002-3829-4636$$aEisen, Christian Karl$$b0
000288151 245__ $$aFast online spectral-spatial pulse design for subject-specific fat saturation in cervical spine and foot imaging at 1.5 T.
000288151 260__ $$aHeidelberg$$bSpringer$$c2024
000288151 3367_ $$2DRIVER$$aarticle
000288151 3367_ $$2DataCite$$aOutput Types/Journal article
000288151 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1712664769_9969
000288151 3367_ $$2BibTeX$$aARTICLE
000288151 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000288151 3367_ $$00$$2EndNote$$aJournal Article
000288151 500__ $$a2024 Apr;37(2):257-272
000288151 520__ $$aTo compensate subject-specific field inhomogeneities and enhance fat pre-saturation with a fast online individual spectral-spatial (SPSP) single-channel pulse design.The RF shape is calculated online using subject-specific field maps and a predefined excitation k-space trajectory. Calculation acceleration options are explored to increase clinical viability. Four optimization configurations are compared to a standard Gaussian spectral selective pre-saturation pulse and to a Dixon acquisition using phantom and volunteer (N = 5) data at 1.5 T with a turbo spin echo (TSE) sequence. Measurements and simulations are conducted across various body parts and image orientations.Phantom measurements demonstrate up to a 3.5-fold reduction in residual fat signal compared to Gaussian fat saturation. In vivo evaluations show improvements up to sixfold for dorsal subcutaneous fat in sagittal cervical spine acquisitions. The versatility of the tailored trajectory is confirmed through sagittal foot/ankle, coronal, and transversal cervical spine experiments. Additional measurements indicate that excitation field (B1) information can be disregarded at 1.5 T. Acceleration methods reduce computation time to a few seconds.An individual pulse design that primarily compensates for main field (B0) inhomogeneities in fat pre-saturation is successfully implemented within an online 'push-button' workflow. Both fat saturation homogeneity and the level of suppression are improved.
000288151 536__ $$0G:(DE-HGF)POF4-315$$a315 - Bildgebung und Radioonkologie (POF4-315)$$cPOF4-315$$fPOF IV$$x0
000288151 588__ $$aDataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
000288151 650_7 $$2Other$$a1.5 T MRI
000288151 650_7 $$2Other$$aDynamic RF pulses
000288151 650_7 $$2Other$$aDynamic transmission
000288151 650_7 $$2Other$$aFat saturation
000288151 650_7 $$2Other$$aPulse design
000288151 7001_ $$aLiebig, Patrick$$b1
000288151 7001_ $$aHerrler, Jürgen$$b2
000288151 7001_ $$aRitter, Dieter$$b3
000288151 7001_ $$aLévy, Simon$$b4
000288151 7001_ $$aUder, Michael$$b5
000288151 7001_ $$0P:(DE-He78)054fd7a5195b75b11fbdc5c360276011$$aNagel, Armin$$b6$$udkfz
000288151 7001_ $$aGrodzki, David$$b7
000288151 773__ $$0PERI:(DE-600)1502491-X$$a10.1007/s10334-024-01149-8$$n2$$p257-272$$tMagnetic resonance materials in physics, biology and medicine$$v37$$x0968-5243$$y2024
000288151 8564_ $$uhttps://inrepo02.dkfz.de/record/288151/files/s10334-024-01149-8.pdf
000288151 8564_ $$uhttps://inrepo02.dkfz.de/record/288151/files/s10334-024-01149-8.pdf?subformat=pdfa$$xpdfa
000288151 909CO $$ooai:inrepo02.dkfz.de:288151$$pVDB
000288151 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)054fd7a5195b75b11fbdc5c360276011$$aDeutsches Krebsforschungszentrum$$b6$$kDKFZ
000288151 9131_ $$0G:(DE-HGF)POF4-315$$1G:(DE-HGF)POF4-310$$2G:(DE-HGF)POF4-300$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vBildgebung und Radioonkologie$$x0
000288151 9141_ $$y2024
000288151 915__ $$0StatID:(DE-HGF)3002$$2StatID$$aDEAL Springer$$d2023-10-22$$wger
000288151 915__ $$0StatID:(DE-HGF)3002$$2StatID$$aDEAL Springer$$d2023-10-22$$wger
000288151 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bMAGN RESON MATER PHY : 2022$$d2023-10-22
000288151 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-10-22
000288151 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-10-22
000288151 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-10-22
000288151 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-10-22
000288151 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-10-22
000288151 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-10-22
000288151 915__ $$0StatID:(DE-HGF)1110$$2StatID$$aDBCoverage$$bCurrent Contents - Clinical Medicine$$d2023-10-22
000288151 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2023-10-22
000288151 9201_ $$0I:(DE-He78)E020-20160331$$kE020$$lE020 Med. Physik in der Radiologie$$x0
000288151 980__ $$ajournal
000288151 980__ $$aVDB
000288151 980__ $$aI:(DE-He78)E020-20160331
000288151 980__ $$aUNRESTRICTED