Home > Publications database > Modern low-field MRI. > print |
001 | 288523 | ||
005 | 20250406015848.0 | ||
024 | 7 | _ | |a 10.1007/s00256-024-04597-4 |2 doi |
024 | 7 | _ | |a pmid:38381197 |2 pmid |
024 | 7 | _ | |a 0364-2348 |2 ISSN |
024 | 7 | _ | |a 1432-2161 |2 ISSN |
024 | 7 | _ | |a altmetric:167950577 |2 altmetric |
037 | _ | _ | |a DKFZ-2024-00393 |
041 | _ | _ | |a English |
082 | _ | _ | |a 610 |
100 | 1 | _ | |a Pogarell, Tobias |b 0 |
245 | _ | _ | |a Modern low-field MRI. |
260 | _ | _ | |a New York |c 2024 |b Springer |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1723034391_380 |2 PUB:(DE-HGF) |x Review Article |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
500 | _ | _ | |a 2024 Sep;53(9):1751-1760 |
520 | _ | _ | |a This narrative review explores recent advancements and applications of modern low-field (≤ 1 Tesla) magnetic resonance imaging (MRI) in musculoskeletal radiology. Historically, high-field MRI systems (1.5 T and 3 T) have been the standard in clinical practice due to superior image resolution and signal-to-noise ratio. However, recent technological advancements in low-field MRI offer promising avenues for musculoskeletal imaging. General principles of low-field MRI systems are being introduced, highlighting their strengths and limitations compared to high-field counterparts. Emphasis is placed on advancements in hardware design, including novel magnet configurations, gradient systems, and radiofrequency coils, which have improved image quality and reduced susceptibility artifacts particularly in musculoskeletal imaging. Different clinical applications of modern low-field MRI in musculoskeletal radiology are being discussed. The diagnostic performance of low-field MRI in diagnosing various musculoskeletal pathologies, such as ligament and tendon injuries, osteoarthritis, and cartilage lesions, is being presented. Moreover, the discussion encompasses the cost-effectiveness and accessibility of low-field MRI systems, making them viable options for imaging centers with limited resources or specific patient populations. From a scientific standpoint, the amount of available data regarding musculoskeletal imaging at low-field strengths is limited and often several decades old. This review will give an insight to the existing literature and summarize our own experiences with a modern low-field MRI system over the last 3 years. In conclusion, the narrative review highlights the potential clinical utility, challenges, and future directions of modern low-field MRI, offering valuable insights for radiologists and healthcare professionals seeking to leverage these advancements in their practice. |
536 | _ | _ | |a 315 - Bildgebung und Radioonkologie (POF4-315) |0 G:(DE-HGF)POF4-315 |c POF4-315 |f POF IV |x 0 |
588 | _ | _ | |a Dataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de |
650 | _ | 7 | |a 0.55 Tesla |2 Other |
650 | _ | 7 | |a Field strength |2 Other |
650 | _ | 7 | |a Joints |2 Other |
650 | _ | 7 | |a Knee |2 Other |
650 | _ | 7 | |a Low-field |2 Other |
650 | _ | 7 | |a MRI |2 Other |
650 | _ | 7 | |a Musculoskeletal radiology |2 Other |
700 | 1 | _ | |a Heiss, Rafael |b 1 |
700 | 1 | _ | |a Janka, Rolf |b 2 |
700 | 1 | _ | |a Nagel, Armin |0 P:(DE-He78)054fd7a5195b75b11fbdc5c360276011 |b 3 |u dkfz |
700 | 1 | _ | |a Uder, Michael |b 4 |
700 | 1 | _ | |a Roemer, Frank W |b 5 |
773 | _ | _ | |a 10.1007/s00256-024-04597-4 |0 PERI:(DE-600)1461957-X |n 9 |p 1751-1760 |t Skeletal radiology |v 53 |y 2024 |x 0364-2348 |
856 | 4 | _ | |u https://inrepo02.dkfz.de/record/288523/files/s00256-024-04597-4.pdf |
856 | 4 | _ | |u https://inrepo02.dkfz.de/record/288523/files/s00256-024-04597-4.pdf?subformat=pdfa |x pdfa |
909 | C | O | |p VDB |o oai:inrepo02.dkfz.de:288523 |
910 | 1 | _ | |a Deutsches Krebsforschungszentrum |0 I:(DE-588b)2036810-0 |k DKFZ |b 3 |6 P:(DE-He78)054fd7a5195b75b11fbdc5c360276011 |
913 | 1 | _ | |a DE-HGF |b Gesundheit |l Krebsforschung |1 G:(DE-HGF)POF4-310 |0 G:(DE-HGF)POF4-315 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-300 |4 G:(DE-HGF)POF |v Bildgebung und Radioonkologie |x 0 |
914 | 1 | _ | |y 2024 |
915 | _ | _ | |a DEAL Springer |0 StatID:(DE-HGF)3002 |2 StatID |d 2023-08-29 |w ger |
915 | _ | _ | |a DEAL Springer |0 StatID:(DE-HGF)3002 |2 StatID |d 2023-08-29 |w ger |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2023-08-29 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2023-08-29 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2023-08-29 |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2023-08-29 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2023-08-29 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2023-08-29 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1110 |2 StatID |b Current Contents - Clinical Medicine |d 2023-08-29 |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b SKELETAL RADIOL : 2022 |d 2023-08-29 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |d 2023-08-29 |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |d 2023-08-29 |
915 | _ | _ | |a IF < 5 |0 StatID:(DE-HGF)9900 |2 StatID |d 2023-08-29 |
920 | 1 | _ | |0 I:(DE-He78)E020-20160331 |k E020 |l E020 Med. Physik in der Radiologie |x 0 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a I:(DE-He78)E020-20160331 |
980 | _ | _ | |a UNRESTRICTED |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|